Test 1: Multivariable Calculus

Math 212 Ron Buckmire Friday October 14 2005 9:30pm-10:30am

Name: BUCKMIRE

Directions: Read *all* problems first before answering any of them. Questions 2-4 are all related, but different. There are 7 pages in this test. This is a one hour, open-notes, open book, test. **No calculators.** You must show all relevant work to support your answers. Use complete English sentences and CLEARLY indicate your final answers to be graded from your "scratch work."

No.	Score	Maximum
1		30
2		20
3		20
4		30
BONUS		5
Total		100

1. Equation of Planes, Vector Operations. You are given the following three points in the plane:

$$A = (1, 2, 3)$$
 $B = (2, 2, 5)$ $C = (-1, 3, 4)$

(a) (6 points.) Find the vector \vec{v} which starts at A and points to B, and the vector \vec{w} which starts at A and points to C.

$$\nabla = B - A = (2,2,5) - (1,2,3) = (1,0,2)$$

$$\nabla = 1 + 2\hat{k}$$

$$\nabla = -2\hat{i} + \hat{j} + \hat{k}$$

(b) (4 points.) Find $\vec{v} \cdot \vec{w}$. Explain in complete sentences what this tells you about the angle between the two vectors and why.

$$\vec{\nabla} \cdot \vec{\omega} = 1 \cdot (-2) + 0 \cdot 1 + 2 \cdot 1$$

= -2 + 0 + 2
= 0

Vand ware orthogonal, i.e. the angle between mem is 90°. (c) (10 points.) Find $\vec{v} \times \vec{w}$. Explain in complete sentences what this tells you about the area of the triangle ABC.

$$\nabla \times \vec{\omega} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & 0 & 2 \\ -2 & 1 & 1 \end{vmatrix} = \hat{1} \begin{vmatrix} 0 & 2 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ -2 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 0 \\ -2 & 1 \end{vmatrix}$$

$$= \hat{1}(-2) - \hat{j}(1 - (-2)) + \hat{k} = (-2, -5) + \hat{k}$$

$$= (-2, -5, 1)$$
Area of DABC = $\frac{1}{2} |\vec{\nabla} \times \vec{\omega}| = \frac{1}{2} \sqrt{4 + 25 + 1} = \frac{1}{2} \sqrt{30}$

(d) (10 points.) Find the equation of the plane that contains all three points A, B, and C.

We know
$$(-2,-5,1)$$
 is normal to the plane confaining
$$-2(x-1)-5(y-2)+3(z-3)=0$$

$$-2(x-1)-5(y+10+z-3)=0$$

$$-2x+2-5y+10+z-3=0$$

$$-2x-5y+z+9=0$$

2. Level Sets, Vertical Slices. For the rest of the exam we will be considering the surface $z = f(x,y) = x^3 - y^3.$

(a) (10 points.) Identify which of the following graphs represents the level sets f(x,y)=kor different vertical slices (x = k or y = k) of the function for k = -2, -1, 0, 1, 2.

CLEARLY LABEL WHICH GRAPH REPRESENTS HOLDING WHICH

VARIABLE CONSTANT AND FULLY EXPLAIN YOUR CHOICE BELOW.

Figure 1 is level sets
$$z = K$$

Figure 2 is vertical slices $(y = K)$

Figure 3 is vertical slices $(x = K)$

The difference between Fig 2 and Fig 3 is Fig 2

The difference between Fig 2 and Fig 3 looks like $z = K - y^3$

Looks like $z = x^3 - K$ while Fig 3 looks like $z = K - y^3$

(b) (10 points.) Explain how you can use the figures above to estimate that $f_{xy} = f_{yx} = 0$ at the origin (0,0). What is another way you could show this result is true everywhere in the (x, y)-plane?

$$f = x^3 - y^3$$

 $f_x = 3x^2$ $f_{xy} = 0$
 $f_y = -3y^2$ $f_{yx} = 0$
Fig 2: At the origin the rate of change of $\frac{1}{2}$ with $\frac{1}{2}$
near $x = 0$ is the same as one moves
near $x = 0$ is the same as one moves
vertically, so $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ applies to Fig. 1:
 $\frac{1}{2}$ $\frac{1}{2}$

3. Tangent Plane Approximation.

(a) (10 points.) Find the equation of the tangent plane to the surface $f(x,y) = x^3 - y^3$ at the point (x, y) = (1, 2).

point
$$(x,y) = (1,2)$$
.
 $f(l,2) = l^3 - 2^3 = -7$ $f_x = 3x^2$ $f_y = -3y^2$
 $f(x,y) \approx T(x,y) = f(l,2) + f_x(l,2)(x-1) + f_y(l,2)(y-2)$
 $T(x,y) = -7 + 3(x-1) - 12(y-2)$
 $T(x,y) = -7 + 3x - 3 - 12y + 24$
 $T(x,y) = -12y + 3x + 14$

(b) (10 points.) Use this tangent plane approximation of the surface at this point to estimate the value of $(0.9)^3 - (1.99)^3$. [Note: I know the exact value is -7.151599. I'm looking for an estimate of this using the tangent plane approximation.

$$T(0.9, 1.99) = -7 + 3(0.9 - 1) - 12(1.99 - 2)$$

$$= -7 + 3(-0.1) - 12(-0.01)$$

$$= -7 - 0.3 + 0.12$$

$$= -7.3 + 0.12$$

$$= -7.18$$

4. Gradient, Directional Derivative.

(a) (15 points.) The gradient of a function f(x, y) evaluated at a point (x_0, y_0) is a vector pointing in the direction of the maximal rate of change of this function f(x, y) at the point (x_0, y_0) .

In what direction would you go from the point (1,2) to follow the maximal rate of change on $f(x,y) = x^3 - y^3$? What is the magnitude of this maximal rate of change?

$$\nabla f(x,y) = (3x^2, -3y^3)$$
 $\nabla f(1,2) = (3, -12)$

If you go in the direction $3\hat{i} - 12\hat{j}$ that is the direction of maximal rate of change of $f(1,2) = (3, -12)$
 $\nabla f(1,2) = (3, -12)$

(b) (10 points.) What would the rate of change have been if you went in the direction $\vec{w} = \frac{4}{5}\vec{i} - \frac{3}{5}\vec{j}$?

$$\frac{\partial f}{\partial \vec{a}} = \vec{\nabla} f \cdot \vec{a} = (3, -12) \cdot (\frac{4}{5}, -\frac{3}{5})$$

$$= \frac{12}{5} + \frac{36}{5} = \frac{48}{5} = \boxed{9.6}$$

(c) (5 points.) What is a vector direction you can move in if you want the rate of change of $f(x,y) = x^3 - y^3$ at (1,2) to be zero?

The direction to move in would be such that
$$\nabla f(1/2) \cdot \vec{v} = 0$$
 where $\vec{v} = (v_1, v_2)$

$$\vec{v} = (12, 3)$$

$$\vec{v} = (12, 3)$$

BONUS QUESTION. Continuity, Set Theory. (5 points.)

Consider $g: \mathbb{R}^2 \to \mathbb{R}$ where $g(x,y) = \frac{f(x,y)}{x-y} = \frac{x^3-y^3}{x-y}$. Describe the domain of the function g(x,y). What kind of set (open, closed, et cetera) is it? Is the function g(x,y) continuous on this domain? **EXPLAIN YOUR ANSWER THOROUGHLY**, **EXTRA CREDIT POINTS ARE HARD TO GET**.

This set is open. Every point in the set has a neighborhood which only contains points of the set.

The set is NOT CLOSED.

The points along y=x are all limit

Points of the set but are NOT

points of the set but are not

in the set, thus the set does not

g(x,y) 15 continuous everywhereinits

domain. $g(x,y) = x^3 - y^3 = (x - y)(x^2 + xy + y^2)$ x - y $g(x,y) = x^2 + xy + y^2$