Integral Exchange: Applying Integration By Substitution Class 14: Friday February 28

1.
$$\int (x+e^x)^9 (1+e^x) dx =$$

Let u =

Then
$$\frac{du}{dx} =$$

Multiplying both sides by dx gives: du =

Now substitute into the original integral, so that everything is in terms of u instead of x.

$$\int (x+e^x)^9 (1+e^x) \ dx = \int$$

This new integral should be easier than before. Solve it.

Now "convert back to x".

Examples

$$\frac{1}{2. \int \frac{t^2}{5+t^3} dt = 1}$$

Let u =

Then
$$\frac{du}{dt} =$$

So du =

So
$$() \cdot du = t^2 dt$$

3. Substitute, then evaluate:

$$\int \frac{t^2}{5+t^3} \ dt =$$

Convert back:

4.
$$\int_2^5 \frac{t^2}{5+t^3} dt =$$

Question: Can I do the following shortcut?

$$\int_{2}^{5} \frac{t^{2}}{5+t^{3}} dt = \frac{1}{3} \int_{2}^{5} \frac{du}{u} = \frac{1}{3} [\ln(5) - \ln(2)].$$

Answer:

Because:

When t = 2, u =

and when t = 5, u =

$$\int_{t=2}^{t=5} \frac{t^2}{5+t^3} \ dt = \frac{1}{3} \int_{u=}^{u=} \frac{du}{u} = \frac{1}{3} [\ln(\quad) - \ln(\quad)].$$

Application: Integral of tan(x)

$$5. \int \frac{\sin(x)}{\cos(x)} dx$$

GroupWork

6.
$$\int \ln(x) \frac{1}{x} dx$$

7.
$$\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx =$$