Introduction to Integration By Substitution Class 13: Wednesday February 26

The Chain Rule:

Suppose h(x) = f(g(x)). Then

$$\frac{dh}{dx} = h'(x) = f'(g(x)) \cdot g'(x).$$

The derivative of a composite function h(x) is the product of the derivatives of the outside and inside functions. The derivative of the outside function must be evaluated at the inside function.

Example

Try this more complicated chain rule: Suppose k(x) = f(g(h(x))). Find

$$\frac{dk}{dx} = k'(x) =$$

Consider these following functions and compute their derivatives. Which ones do you have to use the chain rule on?

1.
$$f(x) = \sin(x^2)$$
, $f'(x) = \frac{df}{dx} =$ ______

2.
$$g(x) = e^{\sin(x)},$$
 $g'(x) = \frac{dg}{dx} =$ ______

3.
$$h(x) = \pi^x$$
, $h'(x) = \frac{dh}{dx} =$ ______

Remember, how **antidifferentiation** is related to differentiation. With this in mind, try and compute these antiderivatives:

$$1. \int f'(x) \ dx =$$

$$2. \int [f(g(x))]' dx =$$

$$3. \int f'(g(x))g'(x) \ dx =$$

$$4. \int \cos(x) e^{\sin(x)} \ dx =$$

$$5.\int (e^{\sin(x)})' \ dx =$$

6.
$$\int e^{\sin(x)} dx =$$