## More Antiderivatives and the Indefinite Integral Class 12: Monday February 24

**Integrals Practice** 

$$1.\int_{-1}^{0} e^{2x} \ dx =$$

$$2. \int_{-\frac{1}{2}}^{\frac{1}{2}} (x-1)^4 dx =$$

$$3. \int_0^{\frac{\pi}{4}} \frac{1}{\cos^2(x)} dx =$$

$$4.\int_{1}^{2} \frac{3}{x^4} + \frac{x^4}{3} dx =$$

$$5.\int_0^{16} (4x)^{1/4} dx =$$

$$6.\int_{\pi}^{0}\cos(2x) + \pi dx =$$

$$7.\int_0^8 \sqrt[3]{x} \ dx =$$

$$8. \int_{-1}^{1/2} 5x^3 + 2x^2 + 4 \ dx + \int_{1/2}^{1} 5x^3 + 2x^2 + 4 \ dx =$$

## **Elementary Functions**

Any function made up of "combinations" of the "familiar" functions is called an **elementary** function.

More precisely: A function is called elementary if it is obtained from x,  $\sin(x)$ ,  $\cos(x)$ ,  $e^x$ ,  $\ln(x)$ , by addition, subtraction, multiplication, division, exponentiation (powers), or composition.

Example  $5x^4 + \sin(e^{3x+1})$  is an elementary function. Another example of an elementary function is \_\_\_\_\_\_

**Surprising fact:** Many functions do not have antiderivatives that can be written as elementary functions, but they nevertheless do have antiderivatives!

Example  $f(x) = \frac{\sin(x)}{x}$  does have an antiderivative, but we just can't write it down "explicitly" (i.e., as an elementary function).

How do we know  $\frac{\sin(x)}{x}$  has an antiderivative?

Write down the function F(x) whose derivative equals  $\frac{\sin(x)}{x}$ 

$$F(x) =$$

**GroupWork** Find the following derivatives.

1. 
$$\frac{d}{dx}[(x^3+5x)^{14}] =$$

2. 
$$\frac{d}{dx}[(\sin(x))^{24}] =$$

3. 
$$\frac{d}{dx}[(u(x))^{32}] =$$

An indefinite integral is denoted as  $\int f(x)dx$  and represents the set of functions whose derivative equals f(x). It is a family of functions.

## Think-Pair-Share

How is a **definite integral** DIFFERENT from an indefinite integral? (write down as many differences as you can and then share your list with your nearest neighbor)

## GroupWork

Find the following indefinite integrals (explicit form).

1. 
$$\int (3x^2 + 5)(x^3 + 5x)^{13} dx =$$

2. 
$$\int \cos(x)[\sin(x)]^{23} dx =$$

3. 
$$\int u'(x)[u(x)]^{31} dx =$$

4. 
$$\int x^2 (x^3 + 1)^{55} dx =$$