Properties of the Definite Integral Class 8: Friday February 7

Definition of the Definite Integral

$$\lim_{N \to \infty} \sum_{k=1}^{N} f(x_k) \Delta x_k = \int_a^b f(x) \, dx$$

when f(x) is some function defined on the interval [a, b] split into N subintervals consisting of the slices Δx_k , and the limit $N \to \infty$ exists.

PROPERTIES OF THE DEFINITE INTEGRAL.

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} c \cdot f(x) dx = c \int_{a}^{b} f(x) dx$$

$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

If $f(x) \leq g(x)$, for all $x \in [a, b]$, then

$$\int_a^b f(x) \ dx \le \int_a^b g(x) \ dx$$

<u>Problem A.</u> What can you say about the relationship between $\int_1^4 x \ dx$ and $\int_1^4 \ln(x) \ dx$?

Problem B. Suppose you know that
$$\int_2^5 f(x)dx = -6$$
, $\int_2^5 g(x)dx = 9$ and $\int_{-2}^2 f(x)dx = 20$

Try to use the properties of definite integrals to evaluate the following:

1.
$$\int_{2}^{5} [f(x) + g(x)] dx =$$

2.
$$\int_{2}^{5} 4g(x) dx =$$

3.
$$\int_{2}^{5} f(x) \cdot g(x) \ dx =$$

4.
$$\int_{-2}^{5} f(x) dx =$$

5.
$$\int_{5}^{2} f(x) dx =$$

6.
$$\int_{5}^{2} f(x)^{2} dx =$$