Wath 120 Oping 2000	DASIC CALCULUS 2
Quiz 5	DUE: WED. MAR. 5
Name:	
Date: Time Begun: Time Ended:	Monday March 3 Ron Buckmire
Topic covered: Integration by Sul	ostitution and Integral Exchange
The point of this quiz is for you to illustrate your utechnique as an anti-differentiation rule analogous to the Thus one is able to exchange one complicated integral for the chain rule.	ne differentiation rule known as the Chain Rule.
Reality Check:	
EXPECTED SCORE :/10	ACTUAL SCORE :/10
Instructions:1. Once you open the quiz, you have 30 minutes should check Blackboard.oxy.edu for any hints.	- v - v
2. You may not use the book or any of your clamust work alone.	
3. If you use extra paper, please staple it to the a stapler, buy one.	quiz before coming to class. If you don't have
4. After completing the quiz, sign the pledge below to these rules. Complete the reality check to gi did on the quiz.	· · ·
5. Relax and enjoy	
6. This quiz is due on Wednesday, March 5, a WILL BE ACCEPTED.	at the beginning of class. NO LATE QUIZZES
Pledge: I,, pledge	my honor as a human being and Occidental

student, that I have followed all the rules above to the letter and in spirit.

SHOW ALL YOUR WORK

(a) (4 points) Evaluate the integral $A = \int_1^5 \frac{1}{\sqrt{u}} du$

(b) (6 points) Show that your answer in (a) can be used to evaluate the integral $B = \int_0^2 \frac{x}{\sqrt{x^2 + 1}} dx$. In other words show how one integral A can be transformed into the other integral B via a substitution u(x), and write down an equation for how A and B are related.