Class 20: Monday March 12 Integrals Galore!

Here are some sample integrals that you should be able to evaluate, using integration by substitution, integration by parts or simplification then antidifferentiation:

$$\int_{1}^{2} x \ln(x^2) dx =$$

$$\int \frac{x^3 + x}{\sqrt{x}} \, dx =$$

$$\int_{1}^{2} x^3 \ln(x) \, dx =$$

$$\int \sqrt{x+1} \, x^2 \, dx$$

An Algorithm For Computing Antiderivatives and Integrals

- 1. Is it an antiderivative or an integral (i.e. is the answer a family of functions or a number?)
- 2. Try to simplify the integrand.
- 3. Consult your table of antiderivatives.
- 4. Does the integrand consist of a product of functions?
- 5. Do you see a composite function in the integrand? Do you also see the derivative of the "inside function" multiplying the "dx"?
- 6. If using integration by substitution, make sure you can convert the ENTIRE integral into the new variable.
- 7. If using integration by parts, you should choose carefully which function you want to differentiate and which function you want to anti-differentiate.
- 8. If it is a definite integral, you can use numerical methods (Riemann sums) to approximate the answer.
- 9. If it is an antiderivative, you can also consult a table of integrals or a computer program like
- 10. CHECK YOUR ANTIDERIVATIVE, BY DIFFERENTIATING IT TO PRODUCE THE INTEGRAND!