Math 120 Class 18 Spring 2001
Inverse Functions

Inverses and Identities

Many operations on sets of numbers or functions have an identity element and in-
verses in the set. Important examples include addition, multiplication, and composition
of functions.

Addition

There is exactly one real number a with the property that
a+x=x+a=z, forallxeR.

This number, the additive identity, is a = 0.

If b is a real number, there is exactly one real number ¢ such that
b+c=c+b=0.

This number, the additive inverse of b, is ¢ = —b.

We can extend these ideas from numbers to functions. There is exactly one function
h : R — R such that

h(z) + f(z) = f(z) + h(z) = f(z), forall f:R — R.

This function, the additive identity for functions, has the formula h(z) = 0, for all z € R.

The additive inverse of the function f is the function g such that

f(z) +g(z) = g(z) + f(z) = h(z) = 0.

In fact, g(x) = —f(x). The graph of —f(z) is obtained by reflecting the graph of f(x)
across the z-axis.

Multiplication

There is exactly one real number a with the property that
a-r=x-a=ux, forallxeR.

This number, the multiplicative identity, is a = 1.

If b # 0 is a real number , there is exactly one real number ¢ such that
b-c=c-b=1.

This number, the multiplicative inverse of b, is ¢ = b~ = 1/b, the reciprocal of b.
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We can extend these ideas from numbers to functions. There is exactly one function
k : R — R such that

k(z)- f(x) = f(z) - k(z) = f(z), foral f:R—R

This function, the multiplicative identity for functions, has the formula k(z) = 1, for all
x €R.

The multiplicative inverse of the function f is the function g such that
f(@)-g(z) =g(x)- f(x) =k(z) =1

In fact, g(z) = [f(z)]™! = 1/f(x), which exists for all x in the domain of f for which
f(x) #0.

Composition of Functions

This operation has no counterpart for real numbers. Recall that (fog)(z) = f(g(z)).
The identity function (under composition) is the function « : R — R such that

(fou)(z)=(tof)(x)= f(z), forall f:R—R.

The formula for ¢ is «(x) = z, for all z € R.

The function g is the inverse of f (under composition) if

(fog)(x) = (go f)(z) = uz) =z,

That is, if g is the inverse of f under composition, then f(g(x)) = g(f(z)) = z for all z in

the domain of f. The inverse of f is generally denoted by f~!(z).

NOTE: In general, the multiplicative inverse of f is not ‘the inverse ”of f:
[f(@)] 7 A (=)

Ezxzample

The natural logarithm g(z) = In(x) is the inverse of the exponential function f(z) = e”:

eln(:c) — ln(ez) =2 but ln(m) 7& eifﬂ = (efﬂ)—l,
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Graphs of Inverse Functions

1. Suppose f(a) = b. (This means that the point (a,b) is on the graph of f.)
Show that f~!(b) = a. (This means that the point (b,a) is on the graph of f~1.

2. Use this result to explain why the graph of f~! is the reflection about the line y = x
of the graph of f.

Ezample: f(x) = €%, —oc0 <z < +00,

f(z) =In(z) — o0 < x < +00.

Ezample: g(x) =sin(z), -5 <z < Z,

g (z) = arcsin(z) :=sin (), ~1 <z < 1.

5. Does every function have an inverse? Consider h(x) = sin(z), —7 < z < 7.
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Derivatives of Inverse Functions
Analytic Approach

If g= f~1, then z = f(g(x)). Then by the Chain Rule,

d / / / —
1=—F(9(z)) = f(9(z))g (z) so g'(z)= F(g(x))’

provided f’(g(z)) # 0. In the usual notation for inverse functions,

d .1 1 : 11
— r) = ————, provided x 0.
Ezample: For —1 < z <1, z = sin(arcsin(z)) and - sin(z) = cos(z) = /1 — sin®*(z), so
. 1 1
— arcsin(x) = -l<z<Ll

dx \/1 — sin?(arcsin(z)) Vi—a?

Graphical Approach

The graph of f~! is the reflection
of the graph of f about the line y = .

The line tangent to the graph of f~! at (b,a)
is the reflection across the line y = x of the
line tangent to the graph of f at (a,b).

If (d, c) is on the line tangent to the
graph of f~! at (b,a), then (c,d) is on the
line tangent to the graph of f at (a,b).

Thus if (d, c) is another point on the line tangent to the graph of f~1 at (b,a), the slope
of this line can be computed as

the reciprocal of slope of the line tangent to the graph of f at (a,b).
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More Examples of Derivatives of Inverse Functions

6. The inverse of the function f(z) = tan(z) — 7/2 < z < 7/2 is the function g(z) =
arctan(z), —oo < z < oo. Starting with

tan(arctan(z)) =z, —oo < x < 00,

use the Chain Rule to find d% arctan(z). To simplify your answer, it will be useful to
express the derivative of tan(z) = sin(z)/ cos(z) in terms of tan(x).
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Inverse Functions and Antiderivatives

7. Every differentiation rule implies an antidifferentiation rule! Use the work we have
just completed to find the following antiderivatives:

dz
X

/ dx B
1422

8. Evaluate the following definite integrals:

0.5 dx

o5 V1I—a%

/”/2 sinydy
o l+4cos?y



