Class 14: Monday February 26 Introduction to *u*-substitution

- 1. Find the following derivatives.
- (a) $\frac{d}{dx}[(x^3+5x)^{14}] =$

(b)
$$\frac{d}{dx}[(\sin(x))^{24}] =$$

(c)
$$\frac{d}{dx}[(u(x))^{32}] =$$

2. Find the following indefinite integrals.

(a)
$$\int (3x^2 + 5)(x^3 + 5x)^{13} dx =$$

(b)
$$\int \cos(x)[\sin(x)]^{23} dx =$$

(c)
$$\int u'(x)[u(x)]^{31} dx =$$

(d)
$$\int x^2 (x^3 + 1)^{55} dx =$$

This process involves identifying a composite function g'(u) with an "inside function" u(x) in your integrand.

In order to evaluate the integral using the Fundamental Theorem combined with The Chain Rule to find the anti-derivative the integrand must look like g'[u(x)]u'(x).

Clearly:
$$\int g'(u(x))u'(x)dx = g[u(x)] + C$$

This idea can be systematized into a technique of integration known as **INTEGRATION BY SUB-STITUTION**.

Identify the g'(u) and u(x) and u'(x) in the following integral and thus evaluate it.

$$3. \int \frac{\ln(x)}{x} \, dx =$$

4.
$$\int (x+e^x)^9 (1+e^x) dx =$$

Let
$$u =$$

Then
$$\frac{du}{dx} =$$

Multiplying both sides by dx gives: du =

Now substitute into the original integral, so that everything is in terms of u instead of x.

5.
$$\int (x+e^x)^9 (1+e^x) dx = \int$$

This new integral should be easier than before. Solve it.

Now "convert back to x".

$$\mathbf{6.} \int \frac{t^2}{5+t^3} dt =$$
Let $u =$

Then
$$\frac{du}{dt} =$$

So
$$du =$$

So ()
$$\cdot du = t^2 dt$$

Substitute, then solve:

$$\int \frac{t^2}{5+t^3} dt =$$

Convert back:

How does this process change when you have a DEFINITE INTEGRAL?

7.
$$\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx =$$