Class 7: Wednesday February 07 More on Accumulation Functions

There are many examples of **accumulations** we have done in class so far (i.e. when we used the Subdivide-Approximate-Accumulate-Refine method of Riemann Sums to compute something).

One of the first was: DISTANCE TRAVELLED is the accumulation of SPEED with TIME.

Another accumulation car	be written in words as is the accumulation of	
Using symbols, we can sag		
	≈	
In general, we define an a	ccumulation function as	
	$A(\mathcal{X}) = \int_{a}^{\mathcal{X}} f(x) dx$	

In words, we would say that $A(\mathcal{X})$ is the accumulation of f(x) with x, starting at a to some point \mathcal{X} . Example 1

Let's look at some examples of accumulations that we can compute using geometry and other methods. Consider the graph of the following function f(x):

Graphing Accumulation Functions

As \mathcal{X} gets bigger, what does the graph of the accumulation of f(x) from 0 to \mathcal{X} look like? We can write this as $A(\mathcal{X}) = \int_0^{\mathcal{X}} f(x) dx$. Draw the graph of $A(\mathcal{X})$ on the axes below... (HINT: Try substituting in actual numbers for \mathcal{X} to get values of $A(\mathcal{X})$ to be plotted.)

What if we start accumulating from 1 instead of zero? Sketch $B(\mathcal{X}) = \int_1^{\mathcal{X}} f(x) dx$ below. How is it different from $A(\mathcal{X})$?

Accumulation Functions as Anti-Derivatives

Let us define the accumulation function $A(\mathcal{X})$ for the *constant* function f(x) as $A(\mathcal{X}) = \int_0^{\mathcal{X}} C \ dx$ 1. As \mathcal{X} gets bigger, what does the graph of the accumulation of the constant function f(x) = C from 0 to \mathcal{X} look like? Sketch it below (to the right).

2. Let us define another accumulation function $B(\mathcal{X})$ for the *linear* function f(x) = x as $B(\mathcal{X} = \int_0^{\mathcal{X}} x \ dx = 0.$ Sketch a graph of B on the axes below (to the right).

3. Do you see any relationships between the SLOPE of the graph of $A(\mathcal{X})$ at some point \mathcal{X} and the corresponding value $f(\mathcal{X})$?

4. How would the graphs change if you started accumulating from 1 instead of 0?