Quiz 5	EXPERIENCED CALCULUS
Name:	Math 114
Date:	Friday, October 6, 2005
Time Begun:	Ron Buckmire
Time Ended:	Angela Gallegos

Topic: Derivatives

This quiz is intended to illuminate your understanding of derivatives.

Instructions:

- 1. Once you open the quiz, you have 30 minutes to complete it.
- 2. You may not use your text or any other source, including course materials. You may use a calculator. You must work alone. Do not discuss the contents of this quiz with anyone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy or borrow one. UNSTAPLED PAPERS WILL NOT BE GRADED.
- After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. This quiz is due on Monday, October 10, at the beginning of class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I,,	pledge my	honor	as a	human	being	and	Occidental	student
that I have followed all the rules above to t	he letter an	id in sp	irit.					

EXPLAIN YOUR ANSWERS

1. (5 points). Define the derivative for the following function.

$$\Gamma\left(\frac{3^x - \cos(x)}{\ln x}\right)$$

- 2. (5 points). Hughes-Hallett, Page 112, # 30. Consider a vehicle moving along a straight road. Suppose f(t) gives the vehicle's distance from its starting point at time t. Which of the graphs in the figure below could be f'(t) for the following scenarios:
 - (a) A bus on a popular route with no traffic lights.
 - (b) A car with no traffic and all green lights.
 - $\left(c\right)$ A car in heavy (Los Angeles-like) traffic conditions.

