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dy T+ TTY di':" -1 Eyfl T} ( ¥
37, The DL T S L ,
differential equation —= ; can be rewritten as ok w/z) ¥ ) In general

any differential equation that can be rewritten as jr ¥ (:) is called homogeneous. Show that every
homogeneous differential equation can be reduced to a separable equation (in terms of z and v) by
putting y(z) = zv(z).

gt _ s+i+35,

38, The differential equation s e is neither separable nor homogeneous (as defined in Prob-

lem 37). Show that making a change of variable of the form s = £ +a,t = y + b, and choosing @ and b

appropriately, yields a homogeneous equation. The homogeneous equation can then be solved with the
method of Problem 37,

).5 GROWTH AND DECAY
L e - -

In this section we look at exponential growth and decay equations. Consider the population of a
region. If there is no immigration or emigration, the rate at which the population is changing is often
proportional to the population. In other words, the larger the population, the faster it is growing,
because there are more people to have babies. If the population at time ¢ is P, and its continucus
growth rate is 2% per unit time, then we know

Rate of growth of population = 2%(Current population)

and we can write this as
daP
= 0.02P,
The 2% growth rate is called the relative growth rate to distinguish it from the absolute growth

rate, or rate of change of the population, dP/dt. Notice they are in different units. Since

1dpP

Relati te = 2% = ——

ative growth ra B0
the relative growth rate is in percent per unit time, while

Absolute growth rate = Rate of change of population = %

15 in people per unit time.
The equation dP/dt = 0. l}2P is of the form dP/dt = kP for k = 0.02 and therefore has the
solution
P = P02,
Other processes are described by differential equations similar to that for population growth, but
with negative values for k. In summary, we have the following result from the preceding section:

Every solution to the equation

E{—kP

can be written in the form
FP= PQEM,

where Fj is the initial value of P, and k > 0 represents growth,
while k < 0 represents decay.

Recall that the doubling time of an exponentially growing quantity is the time required for it to
double. The half-life of an exponentially decaying quantity is the time for half of it to decay.
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the object of mass rn at an altitude b above the surface of the earth is given by

2
Fe mgh .
(R+h)?
where R is the radius of the earth.
{a) Use Newton's Law of Motion to show that
dv ___gR
dt = (R+hA)7

{b) Rewrite this equation with k instead of ¢ as the independent variable using the chain rule dﬁ =
4y . 2% Hence show that

dv gR?
Vah T TR AR
() Solve the differential equation in part (b).
(d) Find the escape velocity, the value of vy such that v is never zero.

Problems 19-21 refer to the model of the expansion of the universe given on page 526 by the equations

RI=-20 aa (RP=2L4g,

where F{t) is the radius of the universe (assumed spherical), # is ime, & is the universal gravitational constant,
and My is the mass of the universe. (In the text we assumed that O > (.)

19. In this problem we look at the case where C' < 0. Writing O = — K, where K = 0, we have

21

r_ EGM{I
R —:’:1I|l' 7 K.

Since the universe is currently expanding, at this time B > 0, so R’ is currently given by the positive
root, Show that R increases to some value Bpg, and then decreases again, In addition, show that when
this happens and R again approaches zero, then R’ has a large negative value; in other words, a “big
crunch™ happens.

In this problem we look at the case where C = 0. Then we know that

2G My
B

Solve this differential equation, assuming & = 0 when ¢ = (. Give R as a function of t. The resulting

formula for R is called the “fat universe model™ What does this model predict about the expansion of

the universe?

(a) Einstein, who formulated the model of the universe described before Problem 19, wanted the
universe to be stable—neither expanding nor shrinking. Why don't these differential equations
allow for a stable universe?

(b) One estimate for the age of the universe is A(ty)/R'(;) where £ is the current time. (This number
is called the Hubble constant.) Why is this a reasonable estimate for the age of the universe? Is it
an overestimate or an underestimate?

R =

10.7 MODELS OF POPULATION GROWTH

Population projections have been important to political philosophers since at least the late eighteenth
century. As concern for scarce resources has grown, so has interest in accurate population projections.
In this section we will look at two differential equations which are used to model both human and
animal population growth. These differential equations have applications in economics and medicine,
such as modeling the spread of an innovation or the growth of a amor.

Relative versus Absolute Growth Rates
When describing population growth, we often use percentages rather than absolute numbers, For

example, we say the population of the world is now about 5.8 billion people and growing at a
continuous rate of about 1.7% a year, meaning that the relative growth rate is 1.7%:
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dP/dt 1dP

P “P&
The quantity dP/dt is called the absolute growth rate and measures the growth rate in, say, pe
per year. The quantity (dP/dt)/P is called the relative growth rate and represents the absc
growth rate as a fraction of the whole population. Its units are, say, % per year. When talking al
populations we often use the relative growth rate.

= 0.017.

The US Population: 1790--1860

Every ten years the population of the United States is recorded by a census. The first such ce
was in 1790. Table 10.5 contains the census data from 1790 to 1940.

TABLE 10.5 US Population in millions, 1790-1940

Year Population Year Population Year Population
1790 39 1850 231 1910 92.0
1800 53 1860 314 1920 105.7
1810 7.2 1870 386 1930 1228
1820 9.6 1880 50.2 1940 131.7
1830 12.9 1890 62.9

1840 | 17.1 1900 76.0

You might note that the population is given only to the nearest (0.1 million (or 100,000), alth
the population is reported by the US Census Bureau down to the Jast digit (for example, 131,66!
in 1940). We have rounded off because census figures are notoriously inaccurate. For examp
the census of 1990, New York City claimed the census had missed a million people in that city ¢
Thus, giving more digits in the population does not necessarily give more accuracy.

Let us concentrate first on the relative growth rate,(dP/dt) /P, of the US population from
to 1860. If we want to estimate (dP/dt)/P in 1830, we take the rate of change in the popu
and divide it by the population itself:®

1dP ~ 1 _ Population in 1840 — Population in 1830
P dt  Population in 1830 10 years
1 17.1-129
= . = 0.0326 = 3.26%.
12.9 10

Similar calculations for 1790, 1800, . .., 1850 give the percentages in Table 10.6:

TABLE 10.6 Rough estimates af yearly growth rate of US population

Year 1790 1800 1810 1820 1830 1840 185
Relative growth rate 3.39% 3.58% 3.33% 3.44% 3.26% 3.57% 3.53

These percentages are preity close. The relative growth rate, while not precisely const
nearly so. In fact, political and economic events such as war or recession affect the populati
we don’t expect the growth rate to be exactly constant.

The simplest model for population growth is to assume that the relative growth rate is co

in other words
1dP

Pdt
£In Problem 12 at the end of this section we look at an alternative way of estimating the relative growth rate
using data from 1820 as well as from 1840.

k,
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where k is the continuous growth rate. This is equivalent to assuming that the population grows
exponentially:
P = Ppe™.

What should we take for the value of k7 One possibility would be the average of the percentages
we just calculated, namely 3.47%. However, there is a serious objection to using this percentage as
an estimate for k. Remember that k is a continuous growth rate, but the populations are given at
10-year intervals. A 10-year population growth of 34.7% doesn’t come from a continuous yearly
rate of 3.47%. (This would be ignoring the effects of compounding.) If the population increases by
a factor of 34.7% in 10 years, then P(10)/F; = 1.347, where P(10) is the population when t = 10.
Assuming that P = Fye**, we need k to satisfy

P(10) _ x10
= = 1.347.
2 € 1.347
Now we can find the continuous growth rate, k:
In{1.347)
k = ———= = 0.0298.
10

Let's compare predicted and actual values if we model the US population by the differential
equation

E = 0.0298P.
dt

We start with initial population Fy = 3.9 in 1790. Notice that this says we will consider 1790 as
time t = 0, so 1800 is ¢ = 10, and 1810 is ¢ = 20, etc. The solution to the differential equation is

P = 3,9¢0-02%¢

If we put £ = 0,10, 20,..., 70 into this function we get the populations predicted by our model for
the years 1790, 1800, ..., 1860. Table 10.7 contains the comparison to the actual populations.

TABLE 10.7 Predicted versus actual US population 1790-1860

{exponential model)
Year Actual Predicted Year Actual Predicted
1790 is 39 1830 129 12.8
1800 53 5.3 1840 17.1 17.3
1810 7.2 7.1 1850 231 23.3
1820 0.6 05 1860 314 il4

The agreement is remarkable. Of course, since we used the data from the entire 70 year period
to estimate &, we should expect good agreement throughout that period. What is surprising is that
if we had used only the populations in 1790 and 1800 to estimate k, the predictions are still quite
good. Let’s find a new value of k using only the 1790 and 1800 data and compare predictions. The
10 year growth from 1790 to 1800 is 35.9% so k = In(1.359)/10 = 0.0307. We would then predict
the population in 1860 to be

' 3.900907070) — 33 4

which is within about 6% of the actual population of 31.4. It is remarkable that a personin 1800 could
accurately predict what the population of the US would be 60 years later, especially considering all
the wars, recessions, epidemics, additions of new territory, and immigration that took place from
1800 to 1860.

Predictions From The Exponential Model

The grim predictions of the exponential model are reflected in the ideas of Thomas Malthus, an
early nineteenth-century clergyman and political philosopher, who believed that, if unchecked, a
population would grow exponentially, whereas the food supply would grow linearly, and therefore
the population would eventually outstrip the food supply.
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Interestingly enough, an exponential model has fit the growth of world population and
population of many regions remarkably well for decades, even centuries. However, the model m
break down at some point because it predicts that the population will continue to grow without bou
as time goes on—and this cannot be true forever. Eventually the effects of crowding, emigrati
disease, war, and lack of food will have to curb growth, In searching for an improvement, then,
should look for a model whose solution is approximately an exponential function for small val
of the population, but which levels off later.

How to Estimate dP/dt from Data

If, as is often the case, all we know about a population, P, is its values at certain points in time,
have to approximate dFP/dt by AP/At. However there are several different ways this approxima
can be made, As in the example above, we can say

daP ot 18305 Population in 1840 — Population in 1830,
dt 10
However we could equally well have said

% at 1830 & Population in 1830 l—u Population in IEZGI

Both of these are called one-sided estimates because they involve using the population to one
of 1830 but not the other. The first one involving 1840 is the forward, or right-hand, estimate:
second one involving 1820 is the backward, or left-hand estimate. In general, both are equally ¢
or bad estimates for dP/dt. A more accurate approximation can be obtained by averaging the
one-sided estimates, giving

E 41850 & 1 (Pﬂpulanonm 1840 — Population in 1830 Y Population in 1830 — Populationin 182

dt 2 10 10

When we add the two fractions the population in 1830 cancels and we get the two-sided esti
so called becanse it involves data on both sides of 1830:

dP 1 { Population 1840 — Population 1820 Population 1840 — Population 1820
dt 2 10 20
In the exponential model above we used a one-sided estimate. This turned out to give
results after adjusting from 10-year to continuous growth rates. If we had been unable to get acc
predictions using one-sided estimates, we might have tried two-sided estimates instead. In the lo;
model below, we use two-sided estimates, as they tum out to give noticeably better prediction:

The US Population: 1790--1940

The exponential model for the US population works well for reasonable periods of time
exponential growth cannot go on forever, For example, if we tried to predict the population «
US in 1990 using the exponential model we developed above with k& = 0.0298, we would get

US Population in 1990 = 3.9¢00%8)(2%0) _ | 512 million,

which is far from the actual figure of around 250 million.
The problem is that growth rate in the US population between 1790 and 1860 did not stay cor
in later decades. The 10-year percentage growths® from 1860 to 1930 are listed in Table 10.8:

TABLE 10.8 Estimated 10-vear growth rate of US population, 1860-1930

Year 1860 1870 1580 1890 1900 1910 1920
Relative growth rate 21.9% 30.1% 25.3% | 208% | 21.1% 14.9% 16.2% 7

®Calculated using one-sided forward estimates, so that & 48a1 1860 =~ 220 -lnﬁgmmm :
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These figures are nothing like those during the period 1790 to 1860, where they hovered around
34%. The dramatic drop to 22.9% for the decade 1860-1870 is explainable by the Civil War (but
don’t ascribe the entire drop to deaths of the war—see Problem 15, page 541). The growth rate goes
back up during the decade 18701880, but by 1890-1900 it has dropped below the rate during the
Civil War. There is a slight increase in the rate during the immigrations of 1900 to 1910, another
drop during World War 1, a small bounce back, and finally the rate plummets during the recession
of the 1930s. Notice that the effect of the recession is more dramatic than the effect of wars, which
suggests that it is a decrease in birth rate rather than an increase in death rate that is a major factor
in declines in the relative population growth rate.

Our exponential model gives accurate predictions up to 1860. But for the years following 1860,
the exponential model is inadequate. We look for a new model that will take into account the effects
of overcrowding. Because of the effects of crowding, we expect the relative growth rate to decrease
as the population increases. Thus we look at how (dP/dt)/P changes as P changes. This time we
use a two-sided estimate for dP/dt. For example:

dpP iR Pupulaﬁun in 1840 — Population 132(}.
dt 20

Table 10.9 contains estimates for (dP/dt)/ P computed this way for some years between 1790
and 1940. Comparing the last two columns suggests that the values in the last column may be an
approximately linear function of P. To get a better picture of how (dFP/dt)/ P varies with P, we plot
(dP/dt)/P versus P and see whether the points lie on a line. Figure 10.45 shows the scatterplot of
the points together with the line that best fits the points. The equation for the line, which fits quite

well, is e
o 0.0318 — 0.000170F.
1dP 1dP
TABLE 10.9 Sorme estimates for — —. Y
P dt 0_(}4 -
idP o

1860 314 0.0245 '
1890 62.9 0.0205 0.02
1910 92.0 0.0161

1930 | 122.8 0.0106 0.01

25 50 75 100 125
Figure 1045 Scatterplot for US census data of

1 dF
£ G versus P.

Therefore, in our new model P satisfies the differential equation

%? = 0.0318P — 0.000170P%.

This is known as a logistic equarion. 1ts slope field i1s shown in Figure 10.46, together with the
solution with P(0) = 3.9 superimposed. (Notice that ¢ = 0 in 1790.) :
The most striking difference in this model compared with the exponential model is that it

predicts that the US population will level off somewhere below 200 million. The population will
comtinue to grow until dP/dt = 0, which occurs when

0 = 0.0318P — 0.000170F>
50

P=0 or P = 187 million.
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Figure 10.46: Solution to 3 = 0.0318P — 0.000170P? with P(0) = 3.9

Looking at the shape of the solution curve in Figure 10.46, we see that initially the population grov
faster and faster and then slows down as the limiting value of 187 is approached; the fastest grow
rate appears to be about half-way to the limiting value,

Later on in this section we derive the formula for the solution to the logistic equation. For nor
you can check by substitution that the function

187

P= 1+ 47e—00318t

. is a solotion to our logistic equation modeling the US population. (The numbers 187 and the 47 a

not exact values, but have been rounded.) The values predicted by this equation for P agree ve
well with the actual populations up to 1940, See Table 10.10. During the period from 1700 to 194
the largest deviation is about 3% in 1840 and 1870 (the Civil War accounts for the second one). £
other errors are less than 2%.

Of course, the final test is how well our model, based on data from 1790 to 1940, predicts ©
population in the “future,” 1950 to 1990. Table 10.10 contains the predicted and actual data,

TABLE 10.10 Predicted versus actual US population in millions, 17901980 {logistic model)

Year Actual Predicted Year Actual Predicted Year Actoal | Predicted
1790 38 ERY 1860 314 30.8 1930 122.8 1208
1800 53 53 1870 38.6 399 1940 131.7 133.7
1810 1.2 1.2 1880 0.2 50.7 1950 150.7 145.0
1820 0.6 9.8 1590 62.9 633 1960 179.3 154.4
1830 12.9 13.2 1900 76.0 772 1970 203.3 162.1
1540 17.1 17.7 1910 92.0 819 1980 226.5 168.2
1850 23.1 23.5 1920 105.7 106.7 1990 2487 1729

The fit between predicted and actual population values is clearly not good from 1950 on. Desp
World War II, which undoubtedly depressed population growth between 1942 and 1945, in the L:
half of the 1940s the US population surged, wiping out in five years a deficit caused by 15 years
depression and war. The 1950s saw a population growth of 28 million, leaving our logistic mox
in the dust. This surge in population is referred to as the baby boom. All one can say is that bas
on 150 years of data, what happened in the US in the 20 years after World War II was complet:
without precedent. The baby boom could well end up being one of the most important sociologi
events of the twentieth century in the United States, and its consequences will be felt for many ye:
to come.

Once again we have reached a point where our model is no longer useful. This should 1
lead you to believe that a reasonable mathematical model cannot be found; rather it should ser
to point out that no model is perfect and that when one model fails, we seek a better one. Just
we abandoned the exponential mode] in favor of the logistic model for the US population, we co
look further. (See Problems 9 and 10 an page 540.)
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he Logistic Model

The logistic model we used to model the US population from 1790 to 1940 assumed that the relative
growth rate of the population was a linearly decreasing function of P:

The solution to this equation is an exponential function. This is why an exponential model fit the US
population well during the years 1790-1860 when the population was relatively small. In the logistic
model, as P increases, the relative growth rate decreases to zero; it reaches zero when P is given by

k—aP=0
Solving for PP, we get
P= E
a
This is the limiting value of the population, which we call I:
p=2
a

The value L is called the carrying capacity of the environment, and représents the largest population
the environment can support. Writing a = &/ L, the logistic equation becomes

1dP k

P EIh

P _ . ko

E-I:P EF
or

dP P

E—EP(I—E).

This is the general logistic differential equation, first proposed as a model for population growth by
the Belgian mathematician P. F. Verhulst in the 1830s.

Qualitative Solution to the Logistic Equation

Figure 10.47 shows the slope field and characteristic sigmoid, or S-shaped, solution curve for the
logistic model. Notice that for each fixed value of P, that is, along each horizontal line, the slopes
are all the same because dP/dt depends only on P and not on t. The slopes are small near P = 0
and near P = L; they are steepest around P = L/2. For P > L, the slopes are negative, meaning
that if the population is above the carrying capacity, the population will decrease.

P

T N T R N R 48
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o
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Figure 10,47 Slope field for
L =kP(1-%)
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Figure 10.49: Logistic growth with inflection point Figure 10.50: Solutions to the logistic equation

We can locate precisely the inflection point where the slopes are greatest using the graph
dP/dt against P in Figure 10.48. The graph is a parabola because dP/dt is a quadratic functi
of P. The horizontal intercepts are at P = 0 and P = L, so the maximum, where the slope
greatest, is at P = L /2. The graph in Figure 10.48 also tells us that for 0 < P < L/2, the slo
dP/dt is positive and increasing, so the graph of P against ¢ is concave up. (See Figure 10.49) F
L/2 < P < L, the slope dP/dt is positive and decreasing, so the graph of P against ¢ is conce
down. For P > L, the slope dP/dt is negative, so the graph of P against ¢ is decreasing.

If P=0or P = L, there is an equilibrium solution (not a very interesting one if P =
Figure 10.50 shows that P = 0 is an unstable equilibrium because solutions which start near 0 me¢
away. However, P = L is a stable equilibrium.

The Analytic Solution to the Logistic Equation

‘We have already obtained a lot of information about logistic growth without finding a formula
the solution. However, the equation can be solved analytically by separating variables:

dP P L-PF
E—kP(l—E) kP( - )
dP k
fP{L-P}‘fEdt'
‘We can integrate the left side using the integral tables (Formula 26), or by rewriting
.- TR
P(L-F) L\P L-P}

1/1 1 k
fi(ﬁJrL—P) dP:fE"ﬁ

Canceling the constant L, we get

I/

In|P|-ln|L-P|=kt+C.
Multiplying through by (—1) and using the fact that In M — In N = In(M/N), we have

Thus, we have

ol —
b
|-
)
e
2
e —
o
&

which can be integrated to give

L=-P
II:I.IT ==kt =C.
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Exponentiating both sides gives

‘L ;P\ = e = O,
5O
L—;—E = Ae™ " where A=4eC.
We find A by substituting P = F; when t = 0, which gives
L-B .,
= e’ = A
-PI'.'I
Thus
s Foess
Lo b gpas. g f200

P B
Since (L — P)/P = (L/P) — 1, we have

l£:,=1+1-1e,—"t
giving the formula for the logistic curve:
L _L-R
P= m where A= —H] .
*roblems for Section 10.7 =

1. Assuming that Switzerland's population is growing exponentially at a continuous rate of 0.2% a year
and that its 1988 population was 6.6 million, write an expression for the population as a function of time
in years. (Let £ = 0 in 1988.)

2. Consider the logistic model

P 3p_3P
it

(a) Onthe slope field in Figure 10.51, sketch three solution curves showing different types of behavior.
(b) I=s there a stable value of the population? If so, what is it?
{¢) Describe the meaning of the shape of the solution curves for the population: Where is F increasing?
Decreasing? What happens in the long run? Are there any inflection points? Where? What do they
~mean for the population?

B
A e i S N
P N
Pl P A S SF S S i P A A A S
PP o P e i A S S S s
P P e
e R

Figure 10.51: Slope field for dP /dt = 3P — 3P

(d) Sketch a graph of dP/dt against P. Where is d P/ dt positive? Negative? Zero? Maximum? How
do your observations about 4P /dt explain the shapes of your solution curves?
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The total number of people infected with a virus often grows like a logistic curve. Suppose that 10 peopl
originally have the vims, and that in the early stages of the virus (with time, £, measured in weeks), th
number of people infected is increasing exponentially with & = 1.78. It is estimated that, in the lon;
run, approximately 5000 people become infected.

{a) Use this informaticn to find a logistic function to mode] this situation.

{b)  Sketch a graph of your answer to part (a),

{c) Use your graph to estimate the length of time until the rate at which people are becoming infecte
. starts to decrease. What is the vertical coordinate at this point?

Table 10.11 gives the percentage, P, of households with a VCR, as a function of year.

(a) Explain why a logistic model is a reasonable one to use for this data.

(b} Use the data to estimate the point of inflection of P. What limiting value L does this point ¢
inflection predict? Does this limiting value appear to be aceurate given the percentages for 199
and 19917 ;

{c) The best logistic equation for this data turns out to be the following. What limiting value does thi

model predict?
75

P ——— ————
14 316,756t
TABLE 10,11 Percentage of households with a VCR

Year | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984
P(%) | 03| 05 1.k 18 | 31 55 | 106
Year | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991
P(%) | 208 | 360 | 487 | 580 | 646 | 719 | 719

The growth of a certain animal population is governed by the equation
ok
Foodt
where P(t) is the number of individuals in the colony at time t. The initial population is known to b
200 individuals, Sketch a graph of P(t). Will there ever be more than 200 individuals in the colom
Will there ever be fewer than 100 individuals? Explain.
It is of considerable interest to policy makers to model the spread of information through a populatio
For example, various agricultural ministries use models to help them understand the spread of technic
innovations or new seed types through their countries. Two models, based on how the information
spread, are given below. Assume the population is of a constant size M.

=100 - P,

(a) If the information is spfead by mass media (TV, radio, newspapers), the rate at which informatis

is spread is believed to be proportional to the number of people not having the information at th

time. Write a differential equation for the number of people having the information by time

Sketch a solution assuming that no one (except the mass media) has the information initially.
(b} If the information is spread by word of mouth, the rate of spread of information is believed

be proportional to thé product of the number of people who know and the number who don

Write a differential equation for the number of people having the information by time ¢. Sket

the solution for the cases in which

(i) noons

(i) 5% of the population

(ili) 75% of the population
knows initially. In each case, when is the information spreading fastest?

The population of a species of elk on Reading Island in Canada has been monitored for some yea
When the population was 600, the relative birth rate was found to be 35% and the relative death r:
was 15%. As the population grew to 800, the corresponding figures were 30% and 20%. The island
isolated so there is no hunting or migration.

(a) Write a differential equation to model the population as & function of time. Assume that relati
growth rate is a linear function of population.
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(b} Find the equilibrium size of the population. Today there are 500 elk on Reading Island. How do
you expect the population to change in the future?

{c) Ol has been discavered on a neighboring island and the oil companies want to move 430 elk of
the same species to Reading Island. What effect would this move have on the elk population on
Reading Island in the fomre?

{d) Assuming the elk are moved to Reading Island, sketch the population on Reading Island as a
function of time. Start before the ¢lk are transferred and continue for some time into the future.
Comment on the significance of your results,

Many organ pipes in old European churches are made of tin. In cold climates such pipes can be affected
with rin pest, when the tin becomes brittle and crumbles into a grey powder. This transformation can
appear to take place very suddenly because the presence of the grey powder encourages the reaction to
proceed. At the start, when there is little grey powder, the reaction proceeds slowly. Similarly, toward
the end, when there is litfle metallic tin left, the reaction is also slow. In between, however, when there
is plenty of both metallic tin and powder, the reaction can be alarmingly fast.

Suppose that the rate of the reaction is proportional to the product of the amount of tin left and the
quantity of grey powder, p, present at time {. Assume also that when metallic tin is converted to grey
powder, its mass does not change,

{(2) Write a differential equation for p. Let the total quantity of metallic tin present originally be B.

(b) Sketch a graph of the solution p = f(t) if there is a small quantity of powder initially. How much
metallic tin has crumbled when it is crumbling fastest?

(c) Suppose there is no grey powder initially. (For example, suppose the tin is completely new.) What
does this model predict will happen? How do you reconcile this with the fact that many organ
pipes do get tin pest?

{a) Inthe text we fitted a logistic model to the US population from 17901940, In this problem, we try
to fit a logistic equation to the US population all the way from 1790 to 1990. No logistic equation
fits the data exactly over this entire period, but we can use the method of page 534 to find an
equation that does reasonably well throughout.

To fit a logistic equation to the data in Table 10.12, we estimate the relative growth rate,
(dP/dt)/ P, and plot it against P. To approximate {dP/dt)/ P, calculate (AP/At) /P from the
data for seven fairly spread-out points, Draw a reasonable line (by eye) through your points, and
thus estimate k and a for the equation (dP/dt)/P = k — aP.

TABLE 10.12 US population in millions, 1790-1990

Year | Population Year | Popuolation Year | Population
1790 3.9 1860 314 1930 122.8
1800 53 1870 38.6 1940 1317
1810 72 1880 50.2 1950 150.7
1820 9.6 1890 62.9 1960 179.0
1830 129 1900 76.0 1970 205.0
1840 17.1 1910 92.0 1980 226.5
1850 23.1 1920 105.7 1990 248.7

(b) ‘What does this model predict about the US population in the long nm?

{2) InProblem 9 we saw that a logistic model cannot be made to fit the US population very closely,
becanse the points on the graph of (dP/dt)/ P against P are not exactly on a line. In this problem
we try another model. This time we assume that (dP/dt)/ P is a linear function of {, so you plot
(dP/dt)/ P against t (using the same approximate values you calculated in Problem 9). Put a line
through the points by eye, and estimate a and b to fit the equation

?E:a-bt-

(b) When, if ever, does this model predict that the US population will be at its maximum?
(c) Solve the differential equation and sketch its solution.
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An alternative method of finding the analytic solution to the logistic equation

F-+(-3)

uses the substitation P = 1/u.

{a) Show that
dP 1 du

gt udt
{b) Rewrite the logistic equation in terms of u and £, and solve for v in terms of ¢.
{c) Using your answer to part (b}, find P as a function of ¢,

On page 531, we used one-sided estimates for dP/dt to fit an exponential model to the US popula
from 1790-1860. In this problem we use two-sided estimates for the years 1800-1850. Suppose
the US population in millions,

(a) Estimate dP/dt by the symmetric difference quotient ( P(t + 10) — P(t — 10}) /20. Then ¢
pute (dP/dt)/ P for each of these years and average them to estimate k for the exponential me
dP/dt = kP. Compare your value of k with the estimate k =~ 3.47% obtained on page 53.
using (P(t + 10) — P(t)) /10 for dP/dt.

(b) Using your answer to part (a), compute k as the continuous rate of change that leads to the obses
10-year percentage change. Then compare your k with the value k = 2.98% obtained on page

This section suggested two ways of estimating dF/dt: the one-sided (P{t +h)— P[tj] /i
the two-sided (P(t + k) — P(t — h)) /(2h). Let f(z) = z”. Consider the approximations f'(2
(f(2+R) = £(2)) /b and f'(2) = (f(2+h) - F(2— h)) /2h for h = 0.1, 0.01, 0.001. Whis
the better approximation? Is there a pattern to the errors in the approximation as you decrease h71
describe it.
Show that if f(z) = %, then (f(z + h) = f(z = h))/(2h) = f'(z) for any value of h. This shows
if f{z) = z*, the two-sided estimate for the derivative of f(x) is exactly equal to the derivative.
Estimate the US population in 1870 from the 1860 population of 31.4 million, assuming tha
population increased at the same percentage rate during the 1860s as it did in the decades pres
to 1860 (about 34,7% each decade). Compare your estimate with the acmal 1870 population of
million. Find some estimate of the number of people who died in the Civil War. Does the numb
deaths in the Civil War explain the shortfall in the actual population in 18707 What else right influ
the shortfall?

Another way to estimate the limiting population L for the logistic differential equation is to note

the derivative dP/dt is largest when P = L/2. Compute dP/dt for the US census data for 1790-

using the two-sided difference quotient (P(t+ 10) — P(t — 10)) /20. Estimate L by doublin

population when dP/dt is largest. Compare this estimate with the estimate [ = 187 given in the te

Any population, P, for which we can ignore immigration, satisfies

% = Birthrate — Death rate.

For organisms which need a partner for reproduction but rely on a chance encounter for meeting a mat
birth rate is proportional to the square of the population. Thus, the population of such a type of org:
satisfies a differential equation of the form

17.

& =P —bP witha, b>0.
Problems 17-19 investigate the solutions to such an equation.
Consider the eguation
dP 2
= 0.02P° — (LOBP.

{a) Sketch the slope field for this differential equation for 0 < ¢ < 50, 0 < P < &,
(b) Use your slope field to sketch the general shape of the solutions to the differential eq)
satisfying the following initial conditions:
i P0=1 i) P0)=3 (iii) P(0)=4 {iv) P0)=35
{c) Are there any equilibrium values of the population? If so, are they stable?
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18. Consider the equation

dP
5 =P -6F

(a) Sketch a graph of dP/dt against P for positive P,

(b} Use the graph you drew in part (a) to sketch the approximate shape of the solution curve with
P(0) = 5. To do this, consider the following question. For 0 < P < 6, is dF/dt positive or
negative? What does this tell you about the graph of P against £7 As you move along the solution
curve with P(0) = 5, how does the value of dP/dt change? What does this tell you about the
concavity of the graph of P against 7

{(c) Use the graph you drew in part (a) to sketch the solution curve with P(0) = 8.

(d) Describe the qualitative differences in the behavior of populations with initial value less than 6
and initial value more than 6. Why do you think P = 6 is called the threshold population?

19. Consider a population satisfying

%:aPl—-bP with constants a, b > 0.

(a) Sketch a graph of dP/dt against P.

{(b) Use this graph to sketch the shape of solution curves with various initial values. Use your graph
from part (a) to decide where d P/ dt is positive or negative, and where it is increasing or decreasing.
What does this tell you about the graph of P against ¢7

(c) Whyis P = b/a called the threshold population? What happens if P(0) = b/a? What happens
in the long-run if P(0) > b/a? What if P(0) < b/a?

10.8 SECOND-ORDER DIFFERENTIAL EQUATIONS: OSCILLATIONS

A Second-Order Differential Equation

When a body moves freely under gravity, we know that

Ps
praad

where s is the height of the body above ground at time ¢ and g is the acceleration due to gravity. To
solve this equation, we first integrate to get the velocity, v = ds/dt:

ds

& e

where vy is the initial velocity. Then we integrate again, giving

1
8= —Egtz + vt + sp,

where sp is the initial height.

The differential equation d?s/dt* = —g is called second order because the equation contains
a second derivative but no higher derivatives. The general solution to a second-order differential
equation will be a family of functions with two parameters, here vy and 5. Finding values for the
two constants corresponds to picking a particular function out of this family.



