Monday November 16
Limits of Functions at Undefined x-values and L'Hôpital's Rule

L'Hôpital's Rule

If the limit on the left has an indeterminate form (i.e. $\frac{0}{0}, \frac{ \pm \infty}{ \pm \infty}$ or $\pm \infty \cdot 0$) then it is equal to the limit on the right (if this limit exists)

$$
\lim _{x \rightarrow b} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow b} f^{\prime}(x)}{\lim _{x \rightarrow b} g^{\prime}(x)}
$$

By using this new rule we can find the limits of a whole bunch of new functions, and we have an easier way to find horizontal asymptotes:
Examples
Take the following limits by first identifying which indeterminate form they take and then apply
L'Hopital's Rule.

1. $\lim _{x \rightarrow \infty} \frac{5+5 x}{3 x-2}$
2. $\lim _{x \rightarrow-\infty} \frac{5+5 x}{3 x-2}$
3. $\lim _{x \rightarrow 1}(x-1)^{3} \ln (x-1)$
4. $\lim _{x \rightarrow 0} \frac{\cos (x)-1+\frac{1}{2} x^{2}}{\sin (x)-x}$

Limits of Functions at Undefined x-values

If a function $f(x)$ is defined for all points near an x-value a, but is undefined at a itself, we can ask ourselves what the limit of the function is as x approaches a from either values smaller than a or greater than a or both, i.e. $\lim _{x \rightarrow a^{-}} f(x)$ OR $\lim _{x \rightarrow a^{+}} f(x)$ or $\lim _{x \rightarrow a} f(x)$ is $+\infty$ or $-\infty$ Just because the function is undefined at a does not mean the limits will be undefined.

Vertical Asymptotes

A function $f(x)$ has a vertical asymptote at $x=a$ if any of the three limits $\lim _{x \rightarrow a^{-}} f(x)$ OR $\lim _{x \rightarrow a^{+}} f(x)$ or $\lim _{x \rightarrow a} f(x)$ is $+\infty$ or $-\infty$
Examples:
For each of the functions below, determine for which x values the function is undefined and thus find out if the function has any vertical asymptotes at these points by taking the limit of the function at this point (or points).
(If you have extra time, you should find the horizontal asymptotes too.)
5. $f(x)=\frac{\sin (x)}{x}$
6. $g(x)=\frac{x^{2}-4}{x-2}$
7. $k(x)=\tan (x)$
8. $m(x)=\frac{1}{3 x-2}$
9. $n(x)=\frac{5+5 x}{3 x-2}$
10. $p(x)=\frac{(3 x+2)(x-7)}{(x+1)(4 x+3)}$
11. $l(x)=e^{\frac{1}{x}}$

ANNOUNCEMENTS

Homework: $H-H$ DO page $66 \# 23$ and page $232 \# 10,11,18,19$ for Wed Nov 18
Reading: $H-H$ READ 127-136
Reminder: Exam 3 is scheduled for Monday November 23 in class
Reminder: GATEWAY Exams need to be passed by the end of the semester or el se your grade is automatically reduced. Absolutely No Exceptions.

