BASIC CALCULUS I

Class 26 Monday November 9 Understanding Limits

We have discussed the concept of successive approximations, sequences and limits but we haven't really sat down and summarized what we know about these concepts.

Warm-up

Look at the table below. Fill in the last line of the table.

The first two columns come from taking $\lim_{x\to 1}$ of the function $f(x) = x^3 - 5x$. The next four columns come from using Newton's Method on f(x) using an initial guess of $x_0 = 1$ and then using a different initial guess of $x_0 = 2$.

x	f(x)	n	x_n	n	p_n
0	0	0	1	0	2
0.5	-2.375	2	-1	1	2.285714286
0.9	-3.771	3	1	3	2.237639989
0.99	-3.979701	4	-1	4	2.236069633
0.999	-3.997997001	5	1	5	2.236067978
:	:	:	÷	:	
1		∞		∞	

Which of the above **sequences** CONVERGE (i.e. have a limit)? And what is the limit in each case?

Continuity

We have learned that the limit of f(x) as x approaches c does not depend on the value of f at x = c. It may happen, however, that the limit is precisely f(c). In such case, we say that the limit can be evaluated by **direct substitution**. That is,

 $\lim_{x \to c} f(x) = f(c) \qquad (\text{Substitute c for x})$

Such well behaved functions are called _______at c

Some Basic Rules Involving Limits

Let b and c be real numbers and let n be a positive integer.

1. $\lim_{x \to c} b = b$ 2. $\lim_{x \to c} x = c$ 3. $\lim_{x \to c} x^n = c^n$

Properties of Limits

Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the following limits.

$\lim_{x \to c} f(x) = L \qquad \text{and } \lim_{x \to c} f(x) = L$	$\lim_{z \to c} g(x) = K$
1. Scalar multiple:	$\lim_{x \to c} bf(x) = bL$
2. Sum or difference:	$\lim_{x \to c} [f(x) \pm g(x)] = L \pm K$
3. Product:	$\lim_{x \to c} [f(x)g(x)] = LK$
4. Quotient:	$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K}, \text{ provided } K \neq 0$
5. Power:	$\lim_{x \to c} [f(x)]^n = L^n$

<u>Exercise</u>

Evaluate the following limit. $\lim_{x \to 2} (7x^2 + 3x - 5) =$

Limits of Polynomial and Rational Functions

1. If p is a polynomial function and c is a real number, then $\lim_{x \to a} p(x) = p(c)$.

2. If r is a rational function given by r(x) = p(x)/q(x) and c is a real number such that $q(x) \neq 0$, then $\lim_{x \to c} r(x) = r(c) = \frac{p(c)}{q(c)}$.

Exercise

Find the limit: $\lim_{x \to 1} \frac{x^2 + x + 2}{x + 1}$

The Limit of a function Involving a Radical

Let n be a positive integer. The following limit is valid for all c if n is odd, and is valid for c > 0 if n is even.

$$\lim_{x \to c} \sqrt[n]{x} = \sqrt[n]{c}$$

The Limit of a Composite Function

If f and g be functions such that $\lim_{x\to c} g(x) = L$ and $\lim_{x\to L} g(x) = f(L)$, then

$$\lim_{x \to c} f(g(x)) = f(L).$$

Exarcise Evaluate the following limits. (a) $\lim_{x\to 0} \sqrt{x^2 + 4}$

(b)
$$\lim_{x \to 3} \sqrt[3]{2x^2 - 10} \cdot \cos(x)$$

(c) $\lim_{x\to 0} e^{\sin(x)}$

(d)
$$\lim_{x \to 1} \frac{\sqrt{x^2 + 1}}{2 + 6x \ln(x)}$$

(e) $\lim_{x \to -1} (2x + 5)^{2x}$

ANNOUNCEMENTS

Homework: *H*-*H* DO page 133 1, 7, 9, 15 for Wed Nov 11 Reading: *H*-*H* READ 127-136 Reminder: Exam 3 is scheduled for Monday November 23 in class