Understanding Limits

We have discussed the concept of successive approximations, sequences and limits but we haven't really sat down and summarized what we know about these concepts.
Warm-up
Look at the table below. Fill in the last line of the table.
The first two columns come from taking $\lim _{x \rightarrow 1}$ of the function $f(x)=x^{3}-5 x$. The next four columns come from using Newton's Method on $f(x)$ using an initial guess of $x_{0}=1$ and then using a different initial guess of $x_{0}=2$.

x	$f(x)$	n	x_{n}	n	p_{n}
0	0	1	0	2	
0.5	-2.375	2	-1	1	2.285714286
0.9	-3.771	3	1	3	2.237639989
0.99	-3.979701	4	-1	4	2.236069633
0.999	-3.997997001	5	1	5	2.236067978
\vdots	\vdots	\vdots	\vdots	\vdots	
1		∞		∞	

Which of the above sequences CONVERGE (i.e. have a limit)? And what is the limit in each case?

Continuity

We have learned that the limit of $f(x)$ as x approaches c does not depend on the value of f at $x=c$. It may happen, however, that the limit is precisely $f(c)$. In such case, we say that the limit can be evaluated by direct substitution. That is,
$\lim _{x \rightarrow c} f(x)=f(c) \quad$ (Substitute c for x)
Such well behaved functions are called \qquad at c

Some Basic Rules Involving Limits

Let b and c be real numbers and let n be a positive integer.

1. $\lim _{x \rightarrow c} b=b$
2. $\lim _{x \rightarrow c} x=c$
3. $\lim _{x \rightarrow c} x^{n}=c^{n}$

Properties of Limits

Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the following limits.
$\lim _{x \rightarrow c} f(x)=L \quad$ and $\lim _{x \rightarrow c} g(x)=K$

1. Scalar multiple: $\quad \lim _{x \rightarrow c} b f(x)=b L$
2. Sum or difference: $\lim _{x \rightarrow c}[f(x) \pm g(x)]=L \pm K$
3. Product: $\quad \lim _{x \rightarrow c}[f(x) g(x)]=L K$
4. Quotient: $\quad \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{K}$, provided $K \neq 0$
5. Power: $\quad \lim _{x \rightarrow c}[f(x)]^{n}=L^{n}$

Exercise

Evaluate the following limit.
$\lim _{x \rightarrow 2}\left(7 x^{2}+3 x-5\right)=$

Limits of Polynomial and Rational Functions

1. If p is a polynomial function and c is a real number, then $\lim _{x \rightarrow c} p(x)=p(c)$.
2. If r is a rational function given by $r(x)=p(x) / q(x)$ and c is a real number such that $q(x) \neq 0$, then $\lim _{x \rightarrow c} r(x)=r(c)=\frac{p(c)}{q(c)}$.

Exercise

Find the limit: $\lim _{x \rightarrow 1} \frac{x^{2}+x+2}{x+1}$
The Limit of a function Involving a Radical
Let n be a positive integer. The following limit is valid for all c if n is odd, and is valid for $c>0$ if n is even.

$$
\lim _{x \rightarrow c} \sqrt[n]{x}=\sqrt[n]{c}
$$

The Limit of a Composite Function
If f and g be functions such that $\lim _{x \rightarrow c} g(x)=L$ and $\lim _{x \rightarrow L} g(x)=f(L)$, then

$$
\lim _{x \rightarrow c} f(g(x))=f(L)
$$

Exercise

Evaluate the following limits.
(a) $\lim _{x \rightarrow 0} \sqrt{x^{2}+4}$
(b) $\lim _{x \rightarrow 3} \sqrt[3]{2 x^{2}-10} \cdot \cos (x)$
(c) $\lim _{x \rightarrow 0} e^{\sin (x)}$
(d) $\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+1}}{2+6 x \ln (x)}$
(e) $\lim _{x \rightarrow-1}(2 x+5)^{2 x}$

