1. (a) $\frac{d}{d x}\left[\left(x^{3}+4 x^{2}\right)^{7}\right]=$
(b) $\frac{d}{d x}\left[(\ln x)^{7}\right]=$
(c) $\frac{d}{d x}\left[(\sin x)^{7}\right]=$
(d) $\frac{d}{d x}\left[(\arcsin x)^{7}\right]=$
(e) $\frac{d}{d x}\left[(f(x))^{7}\right]=$
(f) So if $y=f(x)$, then $\frac{d}{d x}\left[y^{7}\right]=$

Part (e) is chain rule. Part (f) is implicit differentiation.
What is the difference?

To understand the MEANING of implicit differentiation in terms of rates of change, fill in the following blanks.

$$
\frac{d}{d y}\left[y^{3}\right]=
$$

So, at $\mathbf{y}=\mathbf{2}$, the rate of change of y^{3} is \qquad
This means increasing y by 1 unit causes y^{3} to increase by \qquad units.
Now, suppose y is a function of x. And suppose $\frac{d y}{d x}=5$.
This means increasing x by 1 unit causes y to increase by \qquad units, which in turn causes y^{3} to increase by \qquad units.

Implicit differentiation says exactly the same thing:

$$
\frac{d}{d x}\left[y^{3}\right]=
$$

2. (a) Solve the equation $8 x^{3}+2 y^{5}=1$ for x in terms of y.
(b) Now solve the same equation for y in terms of x.
(c) When $x=29, y=$

When $y=132, x=$
(d) Is x a function of y or is y a function of x ?
\Rightarrow We say the equation $8 x^{3}+2 y^{5}=1$ gives x implicitly as a function of \qquad , while the equation
$x=(1 / 2) \sqrt[3]{1-2 y^{5}}$ gives x \qquad as a function of y.

Similarly, we say the equation $8 x^{3}+2 y^{5}=1$ gives y implicitly as a function of \qquad , while the equation $y=$ \qquad gives y explicitly as a function of x.
3. (a) Can you solve the equation $x^{2}+y^{3}=8-x+x y^{5}$ for y in terms of x ?
(b) When $x=0, y=$
(c) Surprising fact: We can find the slope of the graph at $x=0$! (as follows)

Implicitly differentiate the above equation with respect to x, i.e., apply $\frac{d}{d x}$ to both sides of the equation.

Now plug in $x=0$ and $y=\ldots$, and then solve for $\frac{d y}{d x}$.
4. Find the equation of the tangent line to the graph of $\ln (x y)=2 x$ at $x=1$.

ANNOUNCEMENTS

Homework due Monday, 11/02/98:
HH, section 4.7: 1, 5, 7, 11, 13, 18.

