Wednesday $10 / 16 / 98$
The chain rule.

Chain Rule: $[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Example. Let $f(x)=x^{17}, g(x)=x^{2}+5$.
(i) $f^{\prime}(x)=$
(ii) $g^{\prime}(x)=$
(iii) $f(g(x))=$
(iv) $f^{\prime}(g(x))=$
(v) $\left[\left(x^{2}+5\right)^{17}\right]^{\prime}=$

1. Let $f(x)=x^{17}, g(x)=\sin x$. Then
$\left[(\sin x)^{17}\right]^{\prime}=$
2. Find each of the following derivatives.
(a) $\left[\left(e^{x}+\sin x\right)^{17}\right]^{\prime}=$
(b) $\left[e^{x^{3}}\right]^{\prime}=$

An interpretation of the Chain Rule

Suppose z is a function of y, and y is a function of x.
Suppose we're given the following:
(a) The rate of change of z with respect to y is 4 .
(b) The rate of change of y with respect to x is 3 .

Part (a) says: For every unit increase in y, z increases by \qquad units. Part (b) says: For every unit increase in x, y increases by \qquad units.

THEREFORE, if we increase x by 1 unit, y will increase by \qquad units, which in turn causes z to increase by \qquad units.

Notation: Given a function $f(x)$, there are many ways for writing its derivative:
$f^{\prime}(x) \quad f^{\prime} \quad \frac{d f}{d x} \quad \frac{d}{d x} f \quad \frac{d}{d x} f(x) \quad D f(x) \quad D f$

So the Chain Rule can be rewritten as: $\frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}$
(So on the previous page, we had: $12=4 \cdot 3$.)
3. Find the following derivatives:
(a) $\frac{d}{d x}\left[\sqrt{x^{2}+1}\right]=$
(b) $\frac{d}{d x}\left[\ln \left(x^{2}+1\right)\right]=$
(c) $\frac{d\left[\ln \left(x^{2}+e^{\sin x}\right)\right]}{d x}=$
(d) $\frac{d\left[e^{\ln x}+\left(x^{3}+6\right)^{-1}\right]}{d x}=$
4. Let $h(x)=f(g(x))$. Complete the following table.

x	2	7
$f(x)$	-1	0
$g(x)$	7	19
$f^{\prime}(x)$	1.4	8
$g^{\prime}(x)$	432	.03
$h(x)$		
$h^{\prime}(x)$		

ANNOUNCEMENTS

Homework, due Monday, 10/19/98: HH, section 4.4: 3, 7, 13, 21, 35, 37; section 4.5: 13, 17.
Second exam: Thursday 10/29, in Lab.

