Chain Rule: $[f(g(x))]' = f'(g(x)) \cdot g'(x)$. Example. Let $f(x) = x^{17}$, $g(x) = x^2 + 5$. (i) f'(x) =(ii) g'(x) =(iii) f(g(x)) =(iv) f'(g(x)) =

(v) $[(x^2+5)^{17}]' =$

- 1. Let $f(x) = x^{17}$, $g(x) = \sin x$. Then $[(\sin x)^{17}]' =$
- 2. Find each of the following derivatives.
- (a) $[(e^x + \sin x)^{17}]' =$

(b) $[e^{x^3}]' =$

An interpretation of the Chain Rule

Suppose z is a function of y, and y is a function of x. Suppose we're given the following:

(a) The rate of change of z with respect to y is 4.

(b) The rate of change of y with respect to x is 3.

Part (a) says: For every unit increase in y, z increases by _____ units. Part (b) says: For every unit increase in x, y increases by _____ units.

THEREFORE, if we increase x by 1 unit, y will increase by _____ units, which in turn causes z to increase by _____ units.

<u>Notation</u>: Given a function f(x), there are many ways for writing its derivative:

$$f'(x)$$
 f' $\frac{df}{dx}$ $\frac{d}{dx}f$ $\frac{d}{dx}f(x)$ $Df(x)$ Df

So the Chain Rule can be rewritten as: $\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$ (So on the previous page, we had: $12 = 4 \cdot 3$.)

3. Find the following derivatives:

(a)
$$\frac{d}{dx}[\sqrt{x^2+1}] =$$

(b)
$$\frac{d}{dx}[\ln(x^2+1)] =$$

(c)
$$\frac{d\left[\ln(x^2 + e^{\sin x})\right]}{dx} =$$

(d)
$$\frac{d \left[e^{\ln x} + (x^3 + 6)^{-1}\right]}{dx} =$$

4. Let h(x) = f(g(x)). Complete the following table.

x	2	7
f(x)	-1	0
g(x)	7	19
f'(x)	1.4	8
g'(x)	432	.03
h(x)		
h'(x)		

ANNOUNCEMENTS

Homework, due Monday, 10/19/98: HH, section 4.4: 3, 7, 13, 21, 35, 37; section 4.5: 13, 17. Second exam: Thursday 10/29, in Lab.