Wednesday $10 / 14 / 98$
The product and quotient rules.

Recall: $[f(x)+g(x)]^{\prime}=$ \qquad ; or, more briefly;

$$
[f+g]^{\prime}=
$$

Example: $\left[x^{4}+\sin (x)\right]^{\prime}=$ \qquad .

Wouldn't it be nice if we also had the simple rule: $[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) \cdot g^{\prime}(x)$? \qquad .
Unfortunately, THIS RULE IS WRONG! :-(

Product rule: $[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$.
Or more briefly:

$$
[f g]^{\prime}=
$$

Example: $\left[x^{4} \cdot \sin (x)\right]^{\prime}=$ \qquad .

1. Now do the following exercises. (You don't need to simplify.)
(a) $\left[x^{5} \cos (x)\right]^{\prime}=$
(b) $\left[x^{5} \cos (19)\right]^{\prime}=$
(c) $\left[e^{x} \ln (x)\right]^{\prime}=$
(d) $\left(x^{3} \cdot 3^{x}\right)^{\prime}=$
(e) $\left(2^{x} \cdot 3^{x}\right)^{\prime}=$

Quotient rule:

$$
\left[\frac{f}{g}\right]^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

2. Now do the following exercises. (You don't need to simplify.)
(a) $\left[x^{5} /(1+x)\right]^{\prime}=$
(b) $\left[e^{5} / \cos (x)\right]^{\prime}=$
(c) $\left[\left(x^{2}-4\right) /(x+2)\right]^{\prime}=$
(d) $[\sin (x) / \cos (x)]^{\prime}=$

So, $[\tan (x)]^{\prime}=$

True of False? $\left[\left(x^{5}+8\right)^{2}\right]^{\prime}=2\left(x^{5}+8\right)$.
3. (a) Find the derivative of $f(x)=\left(x^{5}+8\right)^{2}$ by first multiplying out, and then differentiating.
(b) Find the derivative of $f(x)=\left(x^{5}+8\right)^{2}$ by rewriting it as $f(x)=\left(x^{5}+8\right)\left(x^{5}+8\right)$ and using the product rule.
4. Let $f(x)=\ln (x) / x$, and $g(x)=x / e^{-x}$.
(a) Find $f(1)$ and $g(1)$.
(b) Find $f^{\prime}(1)$ and $g^{\prime}(1)$.
5. Suppose $r(5)=2, r^{\prime}(5)=3, s(5)=7, s^{\prime}(5)=-4$.
(a) Let $d(x)=r(x)+s(x)$. Find $d(5)$. Find $d^{\prime}(5)$.
(b) Let $p(x)=r(x) \cdot s(x)$. Find $p(5)$. Find $p^{\prime}(5)$.
(c) Let $q(x)=r(x) / s(x)$. Find $q(5)$. Find $q^{\prime}(5)$.

ANNOUNCEMENTS

Homework, due Friday, 10/16/98: HH, section $4.3: 2,3,15,18,27,35$.
Second exam: Thursday 10/29, in Lab.

