Wednesday October 7
Computing Derivatives

## Warm-Up

Is there any relationship between the graph of a function and the graph of its derivative?

- If a function is DECREASING on an interval $[\mathrm{a}, \mathrm{b}]$ does this imply anything about its derivative? (If yes, what?)
- What if the function is INCREASING on the interval [a,b]?
- If a function $f$ is CONSTANT on an interval, then this implies $f^{\prime}=$


## Notation:

The derivative (slope, (instantaneous) rate of change) of a function $f$ is defined as:

$$
\begin{aligned}
\frac{d}{d x} f(x)=f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x)-f(x-\Delta x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x}
\end{aligned}
$$

provided that all of these limits exist and are equal. In this case, $f$ i s said to be differentiable at $x$.

Derivative of a Constant Function. For $c$ a constant, the derivative of $f(x)=c$ equals $f^{\prime}(x)=$

Derivative of a Linear Function. If $f(x)=m x+b$, then $f^{\prime}(x)=$ $\qquad$

Constant Multiple Rule. If $F(x)=c \cdot f(x)$, then $F^{\prime}(x)=$ $\qquad$ .
Proof. $\quad F^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{F(x+\Delta x)-F(x)}{\Delta x}$

Derivatives of Sums and Differences. If $F(x)=f(x)+g(x)$, then $F^{\prime}(x)=$ $\qquad$ .

Proof. $\quad F^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{F(x+\Delta x)-F(x)}{\Delta x}$

So if $F(x)=f(x)-g(x)$, then $F^{\prime}(x)=$ $\qquad$ .

Derivative of a Power Function. To calculate the derivative of $x^{2}$ (using the righthanded difference quotient) we had to multiply out ( $x+\Delta x)^{2}$. In general, to find the derivative of $x^{n}$ (for $n$ and integer) we will have to multiply out $(x+\Delta x)^{n}$. Let's look at some examples:

$$
\begin{aligned}
(x+\Delta x)^{2}= & x^{2}+2 x \Delta x+(\Delta x)^{2} \\
(x+\Delta x)^{3}= & x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3} \\
(x+\Delta x)^{4}= & x^{4}+4 x^{3} \Delta x+6 x^{2}(\Delta x)^{2}+4 x(\Delta x)^{3}+(\Delta x)^{4} \\
\vdots & \vdots \\
(x+\Delta x)^{n}= & x^{n}+n x^{n-1} \Delta x+\underbrace{\cdots \cdots \cdots+(\Delta x)^{n}}
\end{aligned}
$$

Terms involving $(\Delta x)^{2}$ and higher powers of $\Delta x$

Now to find the derivative of $f(x)=x^{n}$ :
$f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=$

## Exercise

If $f(x)=x, f^{\prime}(x)=$ $\qquad$ , If $f(x)=x^{2}, f^{\prime}(x)=$ $\qquad$
If $f(x)=x^{3}, f^{\prime}(x)=$ $\qquad$ . If $f(x)=x^{4}, f^{\prime}(x)=$ $\qquad$
If $f(x)=x^{n}, f^{\prime}(x)=$ $\qquad$

