Monday 10/05/98
The derivative as a function.

1. Let $f(x)=x^{2}$. Find the following derivatives algebraically.
(a) Find $f^{\prime}(5)$
(b) Find $f^{\prime}(122)$
(c) Find $f^{\prime}(a)$.
f^{\prime} is a function:
input $=5$, output $=\ldots ;$; \quad input $=122$, output $=$ \qquad ; \quad input $=a$, output $=$ \qquad .

So we write $f^{\prime}(x)=$ \qquad .
2. (a) Let $f(x)=5 x+3$. Find its derivative $f^{\prime}(x)$ algebraically.
(b) $f^{\prime}(28)=$; $\quad f^{\prime}(0)=-$;
$f^{\prime}(-8)=$ \qquad
Does this make sense? (Think about the graph of f and its slope.)
3. Differentiate $f(x)=1 / x$ algebraically.
4. (a) Suppose the graph of a function $g(x)$ is as shown below. Sketch a graph of its derivative $g^{\prime}(x)$.
(b) On which intervals is g increasing?

What do you notice about g^{\prime} on these intervals?
(c) On which intervals is g decreasing?

What do you notice about g^{\prime} on these intervals?
(d) On which intervals is g constant?

What do you notice about g^{\prime} on these intervals?
5. Which of the following is correct?
$f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad$ OR $\quad f^{\prime}(a)=\lim _{b \rightarrow a} \frac{f(b)-f(a)}{b-a} \quad$ OR $\quad f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
Explain your answer.

ANNOUNCEMENTS

Homework, due Wednesday, 10/07/98: HH, section $2.3: 16,22,25,26,30,31$. Functions Gateway exam: Thursday 10/08, in Lab.

