Definition: The slope of a function $f(x)$ at a point $x=a$ is also called the derivative of $f(x)$ at $x=a$.

Example: Let $f(x)=x^{2}-1$.

1. $f(\sqrt{2})=$?
2. Use the table below to estimate the derivative of $f(x)=x^{2}-1$ at $x=\sqrt{2}$.

x	$f(x)$	$x-\sqrt{2}$	$f(x)-f(\sqrt{2})$	estimate for derivative
2				
1.5				
1.45				
1.415				
1.414215				

So, the SLOPE (or the DERIVATIVE) of $f(x)=x^{2}-1$ at $x=\sqrt{2}$ is EXACTLY

The mathematical way of abbreviating this long sentence is:
3. There is also a third name for slope, derivative:

So we denote the derivative of f at $x=\sqrt{2}$ by

Note:
$\frac{f(x)-f(\sqrt{2})}{x-\sqrt{2}}$ is called the \qquad rate of change of f over the interval \qquad ,
while
$\lim _{x \rightarrow \sqrt{2}} \frac{f(x)-f(\sqrt{2})}{x-\sqrt{2}}$ is called the \qquad rate of change of f at \qquad .

Finding the EXACT slope (derivative) of $f(x)=x^{2}-1$ at $x=\sqrt{2}$.
Step 1. Simplify the difference quotient.
$\frac{f(x)-f(\sqrt{2})}{x-\sqrt{2}}=$

Step 2. "Take the limit". What happens to your answer in Step 1 as x gets closer and closer to $\sqrt{2}$?

We write: $\lim _{x \rightarrow \sqrt{2}} x+\sqrt{2}=$
4. Find the slope of the parabola $f(x)=3 x^{2}$ at $x=1$. Step 1. Simplify.

Step 2. Take limit.
5. Sketch a graph of the parabola $f(x)=3 x^{2}$. (Choose a small scale on your y-axis.) (a) On your graph, draw the tangent line at $x=1$.
(b) On the same graph, draw a line whose slope is "represented" by $[f(1)-f(.5)] /[1-.5]$.
(c) Without doing any computations, can you tell which is larger: the average rate of change of f on the interval $[.5,1]$, or the instantaneous rate of change of f at $x=1$? Why?

ANNOUNCEMENTS

Homework, due Monday, 10/05/98: HH, section 2.2: 3, 4, 8, 9, 13, 19.
Functions Gateway exam: Thursday 10/08, in Lab.

