Successive Approximations to Find Square Roots - The Babylonian Algorithm.

We have already seen one application of successive approximations in the S-I-R model where we obtained a sequence of values using sucessively smaller Δt. Here is another. Pretend you don't have a square root key on your calculator. (The algorithm given here is quite ancient.) How can we approximate $\sqrt{2}$?
Suppose

$$
\begin{aligned}
a & =\sqrt{2} . \text { Square both sides. } \\
a^{2} & =2 \text { Divide both sides by } x . \\
a & =2 / a
\end{aligned}
$$

Only the true square root of 2 satisfies $\sqrt{2}=2 / \sqrt{2}$.
If x is an estimate which is less than the true value for $\sqrt{2}$ then $2 / x$ is an estimate which is \qquad than the true value.
If x is an estimate which is greater than the true value for $\sqrt{2}$ then $2 / x$ is an estimate which is \qquad than the true value.
Hence a better estimate will be \qquad .

Group Work:

Each team will estimate the square root of one of the first 8 prime numbers. Begin with $x=1$ as an estimate for \sqrt{p}. Use successive approximations to find the value of \sqrt{p} to $\mathbf{3}$ decimal places. How many steps does it take?

Guess
a_{n}

Approximation
a_{n+1}

General Babylonian Algorithm.

STEP 1: Let a_{0} be your initial estimate for \sqrt{r}.
STEP 2: Then the next estimate is the average of your most recent estimate and r divided by your most recent estimate.

$$
a_{\text {new }}=\frac{a_{\text {old }}+\frac{r}{a_{\text {old }}}}{2}
$$

STEP 3: Continue calculating terms in the sequence until you reach the level of accuracy desired.

NOTE: You may want to think about how you could use Microsoft Excel or your TI-83 to implement the Babylonian Algorithm. There is a TruBasic implementation in the Calculus directory called BABYLON.TRU.

Limits

The concept of a limit is a central theme of all Calculus courses. When using the Babylonian Algorithm to estimate \sqrt{a}, the sequence of successive approximations

$$
\begin{aligned}
x_{1} & \frac{x_{1}+\frac{a}{x_{1}}}{x_{2}}= \\
x_{3} & =\frac{x_{2}+\frac{a}{x_{2}}}{2} \\
\vdots & \\
x_{n} & =\frac{x_{n-1}+\frac{a}{x_{n-1}}}{2} \\
\vdots &
\end{aligned}
$$

stabilizes. We say that the limit of the sequence of successive approximations is \sqrt{a}, or, rather, that

$$
\lim _{n \rightarrow \infty} x_{n}=\sqrt{a}
$$

Average and Instantaneous Velocity

Recall our discussion in Class 11 about estimating velocity given a table (and a graph) of distance travelled versus time elapsed. Suppose the position of a car at time t seconds is given by (the function) $s(t)$ feet.

Then the average velocity of the car between $t=a$ and $t=b$ is given by,

$$
v_{\mathrm{ave}}=\frac{s(b)-s(a)}{b-a}
$$

The instantaneous velocity at $t=a$ is defined by,

$$
v=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h} .
$$

Finding the rate of change of a linear function.
Previously, the rates of change of functions were the known quantity and we investigated an unknown function by applying Euler's method. (for example; we used S^{\prime}, I^{\prime}, and R^{\prime} to investigate the functions S, I, and R in the SIR model.) Now we will begin with a known function values and investigate its rate of change.

The average rate of change of a function $y=f(x)$ on an interval $[a, b]$ is given by the change in the output divided by the change in the input:

$$
\frac{\Delta y}{\Delta x}=\frac{\text { change in output }}{\text { change in input }}=\frac{f(b)-f(a)}{b-a} .
$$

Example:
What is the average rate of change of the function $f(x)=3 x+2$ on the interval $[4,10]$?

What is the instantaneous rate of change of the function $f(x)=3 x+2$ on the

Rates and slopes are really the same thing for linear functions.
For a linear function, the instantaneous rate of change (slope of the line) equals the average rate of change.

ANNOUNCEMENTS

Your Lab \#1 Reports are due tomorrow in your lab section
Assignment: In CiC, Read sections 3.1 and 3.2 and DO problems 7,8 and 9 on pp. 104105. Due on Friday October 2.

