Example

Recall that in Class \#5 we were given the following rate equation: $y^{\prime}=1+\sqrt{y}$.
(a) We want to know what the rate of change of y when $y=1.8$
(b) Suppose that when $t=0, y=1.8$, use Euler's Method with $\Delta t=.25$ to find $y(1)$

Groupwork

Today we will be doing a number of calculations in small groups. The point of these exercises is for each of you to get even more hands-on experience with computing solutions using Euler's Method.
(a) $y^{\prime}=1+y^{2}, \quad y(0)=0, \quad \Delta t=.25$ or .5 with $t \in[0,2]$
(b) $y^{\prime}=2 \sqrt{y}, \quad y(1)=1, \quad \Delta t=.25$ or .5 with $t \in[1,3]$
(c) $y^{\prime}=e^{-y}, \quad y(2)=0, \quad \Delta t=.25$ or .5 with $t \in[2,4]$
(d) $y^{\prime}=y+3, \quad y(0)=-2, \quad \Delta t=.5$ or 1 with $t \in[0,4]$
(e) $y^{\prime}=\frac{1}{2 y}, \quad y(1)=1, \quad \Delta t=.5$ or 1 with $t \in[1,5]$

Directions

Form groups of 3 or 4 . Choose one of the rate equations (above) and a value of Δt and then compute four steps of Euler's Method to approximate the solution of the rate equation. Fill out the table below.

t	y	y^{\prime}	Δy

In Class \#6 we were introduced to the S-I-R Model of disease.

$$
\begin{array}{lrr}
S^{\prime}=-.00001 S I, & & S(0)=45400 \\
I^{\prime}=.00001 S I-1 / 14 I, & I(0)=2100 \\
R^{\prime}= & 1 / 14 I, & R(0)=2500
\end{array}
$$

Let's confirm our calculations of how S, I and R change with time over the space of 4 days by approximating the solution of the model by using Euler's Method with $\Delta t=1$ day

t	S	I	R	S^{\prime}	I^{\prime}	R^{\prime}	ΔS	ΔI	ΔR

ANNOUNCEMENTS

REMINDER Exam \#1 is scheduled for Thursday September 24 in your lab section HOMEWORK DO Page 52 in $\mathrm{CiC} \mathbf{5}, \mathbf{6 , 7}$ to hand in Fri Sep 18.

