Suppose we want to model the spread of an infectious disease.
Simplifying assumptions:

- Nobody dies from it!
- Recovery always takes 14 days.
- You're contagious during those 14 days.
- You cannot get it twice.

Notation:

$I=\#$ of infected people.
$R=\#$ of recovered people (i.e., already had it).
$S=\#$ of susceptible people (i.e., haven't had it yet).
Rates of change: $I^{\prime}, R^{\prime}, S^{\prime}$.
Units: \qquad per day.

Q: If I people are currently infected, how many of them do you expect will recover today?
\qquad .

So,

$$
R^{\prime}=
$$

True of false?
$I^{\prime}=\#$ of people who get infected per day.
$S^{\prime}=-(\#$ of people who get infected per day).
To write an equation for S^{\prime}, first note that on any given day, the number of people who get infected depends on the number of susceptible people who come into contact with infected people: -If everything else was the same except there were twice as many susceptible people, how would this affect the number of people who become infected?

So,

$$
S^{\prime} \propto
$$

-If everything else was the same except there were twice as many infected people, how would this affect the number of people who become infected?

So,

$$
S^{\prime} \propto
$$

These combine to give

$$
S^{\prime}=
$$

What about I^{\prime} ? It should equal
(\# of people who get infected per day) - (\# of people who \qquad).

So,

$$
I^{\prime}=
$$

Suppose we're given:
$S^{\prime}=-.00001 S I$
$I^{\prime}=.00001 S I-I / 14$
$R^{\prime}=I / 14$
with initial values at time $t=0$ (in units of days):
$S(0)=45400, I(0)=2100, R(0)=2500$.
(a) Find $S^{\prime}(0), I^{\prime}(0)$, and $R^{\prime}(0)$.
(b) Estimate $S(1), I(1), R(1)$.
(c) Using Euler's Method with $\Delta t=1$, repeat parts (a) and (b) above to find the number of infected people on the fourth day $(t=4)$.

ANNOUNCEMENTS

Homework, due Wednesday, 9/16/98:
CiC (Calculus in Context), section $1.1: 8,9,10,15,16,17$.

