Estimating the coffee's temperature more ACCURATELY

Recall: As a hot cup of coffee cools down, it cools down more and more slowly.
Let: $C=$ coffee's temp., $C^{\prime}=$ rate of change of C.
Suppose when $C=180^{\circ} \mathrm{F}, C^{\prime}=-9^{\circ} \mathrm{F}$ per minute.
IF C^{\prime} was constant, then after two minutes the coffee's temperature would be EXACTLY
$C=$ \qquad
But C^{\prime} isn't constant.
So after two minutes C will NOT be exactly $162{ }^{\circ} \mathrm{F}$.
Q: Do you expect the true answer to be <162 or >162 ? Why?

Euler's Method: Use many small time intervals.
Example:
Recall the rate of change equation: $C^{\prime}=$ \qquad .
Assume $k=-.082$, and $A=70^{\circ} \mathrm{F}$.
(a) Find C when $t=30$ seconds.
(b) Find C^{\prime} when $t=30$ seconds.
(c) Repeat for another 30 seconds (i.e., use parts (a) and (b) to find C when $t=1$ minute).
(d) Find C^{\prime} when $t=1$ minute.
(e) Keep repeating until your reach 2 minutes:
find C when $t=1.5$ minutes;
find C^{\prime} when $t=1.5$ minutes;
find C when $t=2$ minutes.
(f) How could we get an even more accurate estimate for C at $t=2$ minutes?

1. Suppose a car is travelling at a CONSTANT speed of $80 \mathrm{mi} / \mathrm{hr}$.
(a) How far will it travel in half an hour?
(b) How far will it travel in 20 seconds?
2. Suppose a car is travelling at $75 \mathrm{mi} / \mathrm{hr}$. The driver applies the brakes. The speed of the car is given by $V(t)=75-3 t^{2}$, where time t is measured in seconds elapsed since the brakes were applied, and V is in $\mathrm{mi} / \mathrm{hr}$.
(a) What is the speed of the car when $t=0$?

When $t=2.5$ seconds?
(b) How long does it take for the car to come to a stop?
(c) Use Euler's Method with one-secont time intervals ($\Delta t=1$) to estimate how far the car travels before coming to a stop.
(d) If we used half-second time intervals ($\Delta t=0.5$) instead, would you expect to get a larger, smaller, or the same answer? Why?

Differential Equations (AKA Rate of Change Equations)

1. Suppose y changes with time t according to the equation $y^{\prime}=1+\sqrt{y}$.
(a) What is the rate of change of y when $y=1.8$?
(b) Suppose when $t=0, y=1.8$. Use Euler's Method with $\Delta t=.25$ to find $y(1)$.
