Friday September 4
Related Functions

Creating new functions from old ones

We can create new functions from old ones by adding, subtracting, multiplying, dividing, shifting, stretching, and composing. You may be familiar with the first four operations. Lets discuss in detail the other three. Consider the graph of the function $g(t)=t^{2}-2 t$ below:

Shifting

How would you change $g(t)=t^{2}-2 t$ to shift the graph up 3 units vertically? Write down the function $G(t)$ which would represent this new, related function.

How would you change $g(t)$ to shift the graph 2 units to the left? Write down the function $G(t)$ which would represent this new, related function.

How would you change $g(t)$ to shift the graph 1 unit to the right? Write down the function $G(t)$ which would represent this new, related function.

Summary
$F(x)$ Shifts $f(x)$ To The Left D Units $\quad F(x)$ Shifts $f(x)$ To The Right D Units
$F(x)$ Shifts $f(x)$ Up D Units
$F(x)$ Shifts $f(x)$ Down D Units

Stretching

What does the graph of $\frac{1}{2} g(t)$ look like? (Sketch it on the axes)

Now consider the graph of $s(x)=\sin (x)$ and $c(x)=\cos (x)$ below

Odd and Even functions
A function $f(x)$ is called odd if $f(-x)=-f(x)$.
Odd functions are symmetric with respect to \qquad _.
A function $f(x)$ is called even if $f(-x)=f(x)$.
Even functions are symmetric with respect to \qquad .
Grouphork
a. Are either of functions $c(x)$ and $s(x)$ even or odd?
b. Show that it is possible to shift $c(x)$ to be identical to $s(x)$ by writing down an equation involving c and s

Composition: Functions of functions
We call $f(g(x))$ or $f \circ g(x)$ a composite function. The function $g(x)$ is called the inner function. It should be clear that the domain of f should contain the range of g.

Notice that when you shift a function $f(x)$ left or right D units you are actually composing $f(x)$ with a linear function $g(x)=x+D$ or $g(x)=x-D$

ANNOUNCEMENTS

REVIEW sections 1.3 (esp. the subsection "The Family of Exponential Functions", pp. 20-21), all of 1.4, 1.6 (esp. the subsection "The Graph of $\log (x)$ ", pp. 38-39), all of 1.7 and 1.9, 1.10 (esp. the subsection "Amplitude, Period and Phase" pp. 53-56) and and all of 1.11 before lab tomorrow. Begin to familiarize yourself with the elementary functions and their graphs. Be able to describe the shapes of the graphs qualitatively.

DO Quiz \#1, which is due at the beginning of class on WED SEP 9.

1. No class on Monday September 7 (Labor Day).
