Class 21 HW SOLUTIONS to selected problems. Math 110, Fall 98 Was due 10/28/98: HH, section 5.5: 2, 4, 5; CiC, p. 289: 2,.

HH:
2. $S=k_{1} / x^{2}+k_{2} /(20-x)^{2}$, so $S^{\prime}=\frac{-2 k_{1}}{x^{3}}+\frac{-2 k_{2}}{(20-x)^{3}}(-1)$.

Set S^{\prime} equal to zero:
$0=\frac{-2 k_{1}}{x^{3}}+\frac{2 k_{2}}{(20-x)^{3}}$, so $\frac{-2 k_{1}}{x^{3}}=-\frac{-2 k_{2}}{(20-x)^{3}}$.
Substitute $7 k_{2}$ for k_{1} :
$\frac{-14 k_{2}}{x^{3}}=-\frac{-2 k_{2}}{(20-x)^{3}}$, so $\frac{7}{x^{3}}=-\frac{1}{(20-x)^{3}}$.
Now solve for x (some messy algebra), and then use the first derivative test to make sure this critical point is a local minimum. Then, since there are no other critical points, we conclude that in fact it's a global minimum.
4. Let x be the length of the side of the rectangle that is parallel to the long wall, and let y be the length of the other two sides. Then, $x+y+y=100$ feet, and area $A=x y$.
We want to maximize A, so use the other equation to eliminate one of the variables:
$x+2 y=100$, so $x=100-2 y$, so $A=(100-2 y) y=100 y-2 y^{2}$.
So, $A^{\prime}=100-4 y$. Set A^{\prime} equal to zero:
$0=100-4 y$, so $y=25$. This is a critical point. We MUST check if A has a GLOBAL MAX at $y=25$:
$A^{\prime \prime}=-4$, so A has a LOCAL max at $y=25$. And because there are no other critical points, there are no other critical points; therefore we have found a global max.
When $y=25$, we get $x=100-2 y=50$, and $A=x y=1250$.
5. (a) Let h be the height of the box. Then
$A=2 x^{2}+4 x h$, so $h=\left(A-2 x^{2}\right) / 4 x$.
So, $V=x^{2} h=x^{2}\left[\left(A-2 x^{2}\right) / 4 x\right]=\left(A x-2 x^{3}\right) / 4$.
(c) $V^{\prime}=(1 / 4)\left(A-6 x^{2}\right)=0$, so $A=6 x^{2}$, so $x=\sqrt{A / 6}$.
$V^{\prime \prime}=(1 / 4)(-12 x)=-3 \sqrt{A / 6}<0$, so V has a local max at this critical point. As above, since there are no other critical points, this must be a global max.

