Math 110 Class 19: Wednesday October 11 Fall 2000

Some Elementary Derivative Formulas and Rules
Warm-Up

1. Suppose a function f is differentiable at the point a. Write down the mathematical
definition of f’(a).

Derivative of a Constant Function

2. Suppose f(z) = C, a constant. Use the definition of the derivative to find f'(a).

The formula you have found works no matter what value a has. That is, given a value of
a as input you can return the value f’(a) as an output. Viewed from this perspective, f’
is a function itself!

3. On the axes to the left, plot the graph of f(z) = 2. On the axes to the right, plot the
graph of f’(a) for this example.
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Derivative of a Linear Function

4. Suppose f(x) = max + b, where m and b are constants. Use the definition of the
derivative to find f’(a).

The formula you have found works no matter what value a has. That is, given a value of
a as an input you can return the value f’(a) as an output. Viewed from this perspective,
f' is a function itself!

5. On the axes to the left, plot the graph of f(z) = 2z + 1. On the axes to the right,
plot the graph of f’(a) for this example.

PROPOSITION: Suppose f(z) = c¢- g(x), where c is a constant and ¢ is differentiable at
a. Then f is differentiable at a and f'(a) = c- ¢'(a).

Proof:  f'(a) = liin w (definition of the derivative)
= lim & g(z) —c-g(a) (definition of function sums)
T—a x—a
= lim c- 9(x) = gla) (factoring)
T—a x—a
=c- lim 9(z) — 9(a) (property of limits)
z—a x—a

=c-g'(a) (definition of the derivative).
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Derivative of the Cosine Function

Suppose f(x) = cos(x). We will use the definition of the derivative, along with properties
of limits and the following three facts, to find f’(a).

Three Facts

cos(xz + h) = cos(x) cos(h) — sin(z) sin(h) (high school trigonometry)
lim cos(h) = 1 =0, lim sin(h) =1 (handout, Week 6 Homework)
h—0 h h—0 h

The Derivation

fla+h)— f(a)

f'(a) = lim (definition of the derivative)

h—0 h
= lim cos(a+ h) = cos(a) (definition of f)
h—0 h
— lim cos(a) cos(h) — sin(a) sin(h) — cos(a) (trig identity)
h—0 h
— bim cos(a)(cos(h) — 1) — sin(a) sin(h) (factoring)
h—0 h
.. cos(a)(cos(h) —1)  sin(a)sin(h) -
= }lllir%) : - }lllir(l) — (property of limits)
B . cos(h)—1 . . sin(h) o .
= cos(a) - }lllir%) 7 — sin(a) - }lllir%) 7 (property of limits, since
cos(a) and sin(a)
are constants)
= cos(a) - 0 —sin(a) - 1 (known facts)
= —sin(a) (arithmetic).

The formula you have found works no matter what value a has. That is, given a value of
a as an input you can return the value f’(a) as an output. Viewed from this perspective,
f' is a function itself!

6. On the axes to the left, plot the graph of f(x) = cos(z). On the axes to the right,
plot the graph of f/(a).
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Derivatives of Sums and Differences of Functions

THEOREM: Suppose f and g are differentiable at a. Then f + g is differentiable at a and

(f+9)(a) = f'(a) + 4 (a).

(f +9)(x) = (f +9)(a)

Proof: (f +9)'(a) = lim (definition of the derivative)

Tr—a Tr—a
= li_r>n (f(x) + g(m)g)c : C(lf(a) +9(2)) (definition of function sums)
IO (ORI
= lim M + lim M (property of limits)
T—a T —a T—a T —a
= f'(a) + ¢'(a) (definition of the derivative).

COROLLARY: If f and g are differentiable at a, then f — g is differentiable at a and

(f = 9)'(a) = f'(a) = f'(a).

Proof: (f—g)'(a)=(f+ (- g))/(a) (subtraction and additive inverses)
= f'(a) + (—9g)'(a) (the theorem above)
= f'(a) + (=1-g)(a) (property of additive inverses)
= f'(a) + (-1-¢'(a)) (the proposition above)
= f'(a) + (—4¢'(a)) (property of additive inverses)
= f'(a) — ¢'(a). (subtraction and additive inverses)

Examples
7. Find the derivatives of the following functions:

f(z) = 2cos(x) + bz

g(x) =4z — cos(z) + 7
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This handout summarizes information about limits that you have learned or will learn
in the second unit of this course.

Definitions

We say that f(x) approaches L as x approaches a from below, and write

lim f(x)=L,

Tr—a~

if and only if it is ALWAYS possible, in principle, to complete a statement of the form
“If < x < a, then 0 < |f(z) — L| < tolerance,”
no matter how small a positive value we choose for the “tolerance.”

We say that f(x) approaches L as x approaches a from above, and write

lim f(x)=L,

z—at

if and only if it is ALWAYS possible, in principle, to complete a statement of the form
“Ifa<z< , then 0 < |f(x) — L| < tolerance,”
no matter how small a positive value we choose for the “tolerance.”
We say that f(x) approaches L as x approaches a, and write

lim f(x) =L,

Tr—a

if and only if the following three statements are true:

lim f(x) exists;
Tr—a—

lim f(x) exists;
z—at

lim f(z) =L = lm f(z).

T—a~ z—at
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Properties

Suppose that the limits lim f(z) and lim g(x) exist. Then

Tr—a Tr—a

. lim ¢f(z) = c¢- lim f(x), where cis a constant
Tr—a Tr—ra

- lim (f(2) + g(2) ) = lim f(z) + lim g(z)

Tr—a Tr—a

. lim f(x)g(z) = lim f(z) - lim g(z)

Tr—a Tr—a Tr—a

. lim f(2)/g(z) = lim f(z)/ lim g(x), provided lim g(z) # 0

r—a r—a

. (Sandwich Theorem)
If f(z) < h(z) < g(x) and lim f(z) = L = lim g(z), then lim h(x) = L.

TrT—a Tr—a

Special Limits

lim C' = C|, for any constant C'

Tr—a

limz=a
r—a




