Linear Functions and Piecewise Linear Functions

Γ_{∞}	rcises
Duc	101303

1. Find two different linear functions satisfying $\Delta y = 3 \Delta x$.

2. Find a linear function satisfying $\Delta y = 3 \Delta x$ and y(0) = 2. Sketch its graph.

Definition: A function f is *piecewise linear* if its graph on any finite interval consists of a finite number of line segments.

3. Consider the graph of the absolute value function $g(x) = |x|, x \in \mathbf{R}$ (all real numbers). Is g(x) a piecewise linear function? In other words, is there a way to represent the full behavior of g(x) using linear functions?

Consider the following function h(t)

$$h: [-1.5, 2] o \mathbf{R}, \quad u = h(t) = \left\{ egin{array}{ll} -2t, & -1.5 \leq t \leq 0 \ 2t, & 0 < t \leq 1.5 \ -t + 4.5, & 1.5 < t \leq 2 \end{array}
ight.$$

- 5. What are the *domain* and *range* of h(t)?
- 6. Evaluate: h(-1) =

$$h(0) =$$

$$h(4) =$$

7. Sketch a graph of h(t) below