Definition (Proportionality)

A variable quantity w is (directly) proportional to a variable quantity z if there is a constant c such that

w = c z.

Examples:

The volume, V, of a fixed mass of an ideal gas is directly proportional to its temperature, T, if the pressure is constant. (Charles' Law)

The magnitude F of the force exerted by a moderately stretched spring is directly proportional to the change ΔL in its length. (Hooke's Law)

2. Suppose a skydiver (who has already jumped out of an airplane) drops a ball. Is the velocity v of the ball directly proportional to the time t which has elapsed since the ball was dropped? Is the change in velocity, Δv , directly proportional to the change in elapsed time, Δt ?

2 3 Elapsed Time, t (sec): 0 1 4 Change in Elapsed Time, Δt Velocity, v(ft/sec): 37 69 101 133 165 Change in Velocity, Δv

Definition (Linear Function)

y = f(x) is the rule of a linear function if a change in the input variable x yields a proportional change in the output variable y.

Thus, if x_1 and x_2 are input values, and $y_1 = f(x_1)$ and $y_2 = f(x_2)$ are corresponding output values, then

$$y_2 - y_1 = k(x_2 - x_1)$$
, for some constant k .

The rule of a linear function f can be given in slope-intercept form as

$$y = mx + b$$
, slope m and 'y'-intercept b ,

or in *point-slope* form as

$$y_0 = f(x_0), \quad \Delta y = m\Delta x, \quad \text{slope } m.$$

Notation: $\Delta y = y - y_0$ and $\Delta x = x - x_0$.

3. Starting with the point-slope form, derive the slope-intercept form.

4. Is
$$y = p(x) = x$$
 linear? Is $w = q(z) = 3z + 5$ linear? Why?