Preparing for Class 27

Reading: Review H-H, Section 2.5, read Section 5.1

Problems: H-H Section 2.5, #1, 4, 5, 10, 11, 13, 16

Homework Due: Only problems assigned to prepare for Class 27 are due at the start of Class 27.

Monday, October 30

Class 27:

Maxima, Minima and Inflection Points

The first and second derivatives can be used to identify points where a differentiable function achieves a local maximum, a local minimum, or passes through an inflection point. One way to see this is to approximate a function near a point using its second-degree or third-degree Taylor polyomial about that point. These observations are useful in graphing and also in optimization problems.

Preparing for Class 28

Reading: H-H, Appendix E (pp. 600-603)

Problems: H-H Section 5.1, # 1, 5, 6, 7, 9, 15, 13

Also solve: Suppose $q(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3$. Let f be a function for which f(a), f'(a), f''(a) and $f^{(3)}(a)$ exist. Suppose q(a) = f(a), q'(a) = f'(a), q''(a) = f''(a) and $q^{(3)}(a) = f^{(3)}(a)$. Find formulas for c_0 , c_1 , c_2 and c_3 in terms of f(a), f''(a) and $f^{(3)}(a)$.

Wednesday, November 1

Class 28:

Finding Roots

A value r is a root of a function g(x) if g(r) = 0. Root-finding problems often arise in using derivatives to find critical points (candidates for maxima and minima). Sometimes one can find roots through factoring. Often, however, it is necessary to approximate a root numerically. Newton's Method for approximating roots has many advantages. It is based on the Microscope Approximation, $\Delta y \approx f'(x)\Delta x$, using known values for Δy and f'(x) to estimate the Δx needed to improve the current estimate x of a root.

Take-Home Quiz on Maxima, Minima and Inflection Points

Lab: Newton's Method for Approximating Roots

Preparing for Class 29

Reading: H-H, Sections 5.3; start reading Section 5.5.

Problems: Section 5.1, # 22, 33, 34; H-H p.603 # 1, 2, 5, 9

Friday, November 3

Class 29:

Optimization Problems

We have all the tools in place now to handle interesting optimization problems involving functions of one variable. Today's class will look at a number of these.

Take-Home Quiz Due at the Start of Class