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A long drink of water: how 
xylem changes with depth

 

From the top of a coast redwood to roots deep within
subterranean caves, water transport in trees is in the news.
Evidence is accumulating that the distance water must travel
within trees determines many of their structural properties. A
recent study of some of the world’s tallest trees demonstrated
that maximum tree height appears to be limited by gravity
and the resistance of the xylem pathway (Koch 

 

et al.

 

, 2004).
Rooting depth, by contrast, shows no such limitation, as
revealed in this issue (see pp. 507–517). McElrone 

 

et al

 

. (2004)
gained access to deep tree roots through caves down to 20 m
below the soil surface, matching roots to their above-ground
shoots by comparing sequences of ribosomal DNA. Their
study examines how differences between stems, shallow roots,
and deep roots in key aspects of xylem structure enhance water
transport from great depths up to the canopy. The study also
provides indirect but compelling evidence for the cohesion-
tension theory of water ascent in plants by demonstrating
that patterns of tension in the xylem and vulnerability to
cavitation are reflected in the structure of the conducting
elements.

 

Xylem anatomy

 

Plant anatomists have known for some time that xylem
conduits (vessels and tracheids) within a plant tend to
increase in diameter in a basipetal direction, from terminal
branches down to the roots (Tyree & Zimmermann, 2002).
According to Vernon Cheadle (1953), vessels themselves first
evolved in roots, replacing less efficient tracheids. Differences
in conduit diameter for stem and root xylem have been
reported for a wide range of species; a typical example is
provided by a quick examination of two-year-old saplings of
basswood (

 

Tilia americana

 

), in which vessels in the second-
year xylem are 1.8 times as wide in the roots as in the stem
(

 

P <

 

 0.001; 

 

n

 

 = 4). Due to difficulties in root excavation,
differences in conduit size along the length of roots have
been less frequently observed, with a few exceptions. The
desert shrub (and invasive species in arid soils) 

 

Retama
raetama

 

 has horizontal roots up to 10 m long, with vessel
elements increasing in width and length at increasing
distances from the base of the stem (Fahn, 1990). Interestingly,
these roots occupy a vertically restricted zone near the
surface of the soil, where the gradient in soil moisture would
be relatively slight. In a study of the hydraulic architecture

of trees in the Proteaceae, Pate 

 

et al

 

. (1995) report increases
in vessel diameter between shallow roots and so-called sinker
roots and along sinker roots with increasing depth. The
deepest roots sampled by Pate 

 

et al

 

. were at 2 m below the
soil surface, whereas McElrone 

 

et al

 

. collected roots at depths
from 7 to 20 m below the surface. For the conifer 

 

Juniperus
ashei

 

, tracheids in shallow roots and deep roots were about
three and four times wider, respectively, than tracheids in
stems; for the three dicotyledonous trees investigated, vessels
in roots were an average of 1.5 (shallow) and 2.3 (deep)
times wider than vessels in stems (Fig.1). Such differences in
xylem anatomy have profound consequences for water
transport, as McElrone 

 

et al

 

. discuss, due to the relationship
between volumetric flow and conduit diameter raised to the
fourth power.

 

Water transport in the roots

 

If wide tracheids and vessels are so efficient at moving water,
why are they more common in deep roots than elsewhere
in trees? One argument put forward by McElrone 

 

et al

 

. is
that large conduits are necessary to minimize the hydraulic
resistance associated with the great path length from deep
roots to the canopy. For relatively short-statured trees such
as those from the arid western USA, the depth of the roots
can greatly exceed the height of the shoots, thus an adaptive
premium is placed on minimizing below-ground hydraulic
resistance. In other words, it behooves a tree to maximize
the hydraulic conductance (

 

K

 

h

 

; m

 

4

 

 MPa

 

−

 

1

 

 s

 

−

 

1

 

) of its deepest
roots. Based on the Ohm’s law analogue, and ignoring
direction and the gravitational component, the rate of water
flow (

 

F

 

; m

 

3

 

 s

 

−

 

1

 

) through the xylem in a plant axis can be
expressed as

 

F =

 

 

 

K

 

h

 

 (

 

�

 

P

 

x

 

/

 

L

 

)

where 

 

�

 

P

 

x

 

 (MPa) is the difference in pressure between the
two ends of the axis and 

 

L

 

 (m) is the axis length (Tyree &
Zimmermann, 2002). This simplified equation is useful to
show that, as McElrone 

 

et al

 

. state, large values of 

 

K

 

h

 

 can
help maintain water flow despite large values of 

 

L

 

. In
addition, large 

 

�

 

P

 

x

 

 would not be required for water uptake
by deep roots, and steep gradients in tension along the
xylem could be avoided. Specific hydraulic conductivity, 

 

K

 

s

 

,
which is 

 

K

 

h

 

 divided by the transverse area of the conducting
tissue (the stele in this case), for deep roots was 7–38 times
greater than for stems and 1.2–2.4 times greater than for
shallow roots (Fig. 1). While not as large as would be predicted
on the basis of differences in conduit diameter, 

 

K

 

s

 

 measured
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by McElrone 

 

et al

 

. for deep roots would help offset their
great distance from the leaves.

 

The soil environment

 

Other reasons why xylem conduits are wider in deep roots
than elsewhere within trees involve constraints that are relaxed
due to the soil environment. As discussed by McElrone 

 

et al.

 

deep roots experience biomechanical release: they are supported
by the soil and unlike shallow roots are relatively unaffected
by mechanical forces acting on the shoot. The reduced need
for the xylem to provide structural support allows deep roots
to be specialized for transport, with fewer xylem fibers,
fewer rays (Pate 

 

et al

 

., 1995), more vessels or tracheids per
transverse area, and conduits with larger lumens than in
shallow roots and stems. Such specialization results not
only in more efficient water uptake but also in reduced
carbon allocation per unit length of root. Construction
costs are lower due to more lumen and less cell wall per unit
volume, and respiration costs are also lower due to the lower
proportion of rays, fibers, and other living cells. Despite
their lower construction and respiratory costs, deep roots
are probably limited in length by carbon due to allometric
considerations.

Constraints due to temperature are also relaxed in the
soil environment of deep roots. A freeze-thaw episode is the
environmental cause of embolism that has been linked most
directly and consistently to conduit diameter (Ewers, 1985),
and the lack of such episodes may account for the relative
scarcity of wide-vesseled lianas in temperate regions. On an
annual basis, a typical soil may vary by 

 

±

 

 6

 

°

 

C at 1 m below
the surface but by only 

 

±

 

 1

 

°

 

C at 4 m (Nobel, 1999), thus deep
roots of the Texas trees sampled by McElrone 

 

et al

 

. never
encounter freezing temperatures and are thus spared this
cause of embolism. In addition, deep roots are also buffered
against excessively high temperatures, which are associated
with reduced vessel diameter in developing wheat roots
(Huang 

 

et al

 

., 1991).
Perhaps the most important environmental constraint

that is relaxed for deep roots is the availability of soil water.
At the cave sites investigated by McElrone 

 

et al.

 

 an under-
ground stream assures a nearly continuous supply of water
to deep roots (although the trees are not phreatophytes – their
roots do not tap directly into water). Differences in water
availability directly and indirectly account for the structural
differences observed in the xylem of stems, shallow roots,
and deep roots. As a direct response, vessel diameter in water
stressed roots of sorghum is significantly smaller than in
non-stressed roots (Cruz 

 

et al

 

., 1992), as are root primordia
in general, which may in turn lead to narrower vessels and
tracheids. Indirectly, vulnerability to stress-induced cavit-
ation may select for smaller conduits in organs routinely
exposed to drying conditions, because wide conduits tend
to embolize more readily (whether because of their greater

diameter or the greater likelihood of air-seeding through
pores in the pit membranes of large conduits is a matter for
further research; Hacke 

 

et al

 

., 2000; Martínez-Vilalta 

 

et al

 

.,
2002). For long roots in particular, reductions in 

 

K

 

h

 

 due
to embolism can be even more limiting to water uptake than
is radial resistance (between the soil and the root xylem),
which tends to limit water uptake for young roots in moist
soil (North & Peterson, in press).

 

Perspectives

 

In two of the species examined by McElrone 

 

et al.

 

 the ranking
of plant axes with respect to vulnerability to embolism is the
same as their ranking in conduit diameter, 

 

K

 

s

 

, and access to
water: deep roots were greatest, then shallow roots, then stems
(Fig. 1). As McElrone 

 

et al

 

. discuss, the greater vulnerability
of roots may be tolerable due to the possibility of conduit
refilling via root pressure. This gradient in vulnerability,
as well as the gradients in conduit width and hydraulic
conductivity, is most readily understood within the frame-
work of the cohesion-tension theory of water ascent in trees.
For example, such differences in xylem structure and func-
tion would not be expected if water flow were driven
predominantly by forces other than transpirational pull,
such as radial pressure applied by tissues or cells along-
side the conduits. The differences in xylem structure and
function within the tree species in this study thus provide

Fig. 1 Next to the stem, shallow roots, and deep roots of the tree 
are the values for vessel diameter (ves; µm), specific hydraulic 
conductivity (Ks; kg m−1 s−1 MPa−1), and vulnerability to cavitation 
(ψ50; MPa) measured for Bumelia lanuginosa by McElrone et al. 
(pp. 507–517).
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some of the best whole-plant evidence gathered to date in
support of the cohesion-tension theory.

 

Gretchen B. North

 

Department of Biology, Occidental College, Los Angeles,
CA 90041, USA

(tel +1323 2592898; fax +1323 3414974;
email gnorth@oxy.edu)
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Phenotypic plasticity – 
contrasting species-specific 
traits induced by identical 
environmental constraints

 

Can it be assumed that a specific environmental constraint
imposed on different species leads to a convergence in, for

example, morphology? A phenotype expressed in response to
external stimuli (e.g. size-reduction in response to mechanical
stress) should be adaptive regardless of species – this is largely
intuitive, but has been poorly studied. In this issue (pp. 651–
660), Puijalon & Bornette reveal exciting new data that suggest
that phenotypic plastic responses to identical environmental
constraints may indeed be species-specific (Puijalon & Bornette,
2004).

 

Phenotypic plasticity – background

 

Early twentieth century research on phenotypic plasticity has
been largely overlooked, with some exceptions (e.g. Bradshaw,
1965), until the last few decades. Not until recently has the
concept of phenotypic plasticity become an important and
integrated part of modern evolutionary and ecological research
(Pigliucci, 1996; see Box 1). The past few decades have seen
a large amount of interdisciplinary research being carried out
on various aspects of phenotypic plasticity and reaction norms
(e.g. Moran, 1992; Dudley & Schmitt, 1996; Lachmann &
Lablonka, 1996; Preston, 1999; Pigliucci, 2002), together with
a number of reviews (e.g. Coleman 

 

et al

 

., 1994; DeWitt 

 

et al

 

.,
1998). Debates have also focused on evolution of phenotypic
plasticity, including traits, models and gene expression
(see De Jong, 1995 for an overview). Today, it seems clear
that phenotypic plasticity must be recognised as central to
evolution rather than a minor phenomenon, secondary to
‘real’ genetic adaptation (Sultan, 1992).

 

Current research

 

An interesting aspect of ongoing research is a closer coupling
between genetics and ecologists (e.g. Jasienski 

 

et al

 

., 1997),
where molecular evolutionary geneticists work together
with plant ecologists. This is likely to be a fruitful cross-
pollination that will reduce the risks of research ‘inbreeding’
and increase the development of healthy new insights in
complex and dynamic ecological systems. It is unfortunate if
genetic and functional aspects of plasticity are studied separately:
they should be complementary.

In addition to investigating the genetic and evolutionary
basis for, and effects of, phenotypic plasticity, it might be
viewed in the context of species interactions, plant community
structure and food-web dynamics. Reciprocal phenotypic
change between individuals of interacting species (Agrawal,
2001) is an area of research that should lead to a greater
understanding, not only of phenotypic plasticity, but also of
species interactions and how these are affected by, and affect,
the environment. The new findings of Puijalon & Bornette
should stimulate research on the significance of species-
specific plastic responses and how these affect distribution
and abundance of individuals and species. It is possible that
different species have different ‘starting points’ (i.e. genetic
conditions), leading to different expressions of adaptive
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plasticity in traits in a given environment. Reduction in stem
length as a response to increased flow velocity might be adaptive.
But if the species is genetically limited in this aspect (i.e. does not
have the ability to effect plasticity in stem length) it is likely
that an alternative response (e.g. decreased rigidity) might also
be adaptive. In a competition situation the magnitude and
cost of plasticity might be factors that decide the outcome.

Aquatic macrophytes are likely to be a good group of
plant to focus on considering their evolutionary history with
several distantly related taxa, exposed to several specific
environmental constraints caused by adaptations to aquatic
life. It is possible that inherent phenotypic plasticity might
be a major factor explaining observed distribution patterns
and shifts in dominance between species.

An applied aspect of plasticity research is the question as
to why some species are invasive and others not. It has been
suggested that invasive species are invasive just because they
are more plastic (Agrawal, 2001). Again, aquatic plants are
relevant since invasive species are frequent in aquatic
habitats and often outcompete the native flora in lakes
and rivers (e.g. Elodea canadensis in Europe, Myriophyllum
spicatum in North America and Salvinia spp. and Eichornica
crassipes in large parts of the tropics). From a nature conserva-
tion point of view, a better understanding about the ecology of
invasive species is paramount, including the species-specific
phenotypic plasticity.

Finally it is important to note that many phenotypic traits
of plants change dramatically over the course of plant growth
– a phenomenon termed ontogenetic drift (Evans, 1972).
Therefore any studies concerning phenotypic plasticity must
take into account size-dependent variation, in order not to
confuse this with true phenotypic plasticity. The interpreta-
tion of variation in many phenotypic traits will therefore
depend on whether comparisons are made as a function of
plant age, size or developmental stage (Coleman et al., 1994).
Allometric studies where difference in size is accounted for is
necessary for the correct interpretation of results concerning
phenotypic plasticity (Schlichting & Pigliucci, 1998).

Perspectives

The work of Puijalon & Bornette opens up new, interesting
areas of research, including further studies on difference
in plastic responses between species, but also, for example,
differences in responses between life-history stages (both
within and between species), and how this might affect com-
petition and plant community structure and dynamics. A first
step should be further studies to examine whether different
responses to an environmental change between species

Fig. 1 Conceptual graphic presentation of reaction norms (phenotypic 
expressions across environments for different genotypes or species). 
Bold letters (G, E, GxE) indicate significant genetic, environmental, 
or gene–environment interaction variance. (a) No phenotypic 
plasticity (denoted by flat reaction norms) but with significant 
genetic effects (space between genotypes). (b) Plasticity and genetic 
variation for traits (sloped and separated reaction norms), but no 
interaction variance (parallel slopes). (c) Differently sloped (positive) 
interaction norms indicating genetic variation for plasticity 
(genotype–environmental interaction). (d) Differently sloped 
interaction norms (both positive and negative) indicating genetic 
variation for plasticity. Opposite slopes indicating that the phenotypic 
expression across the environmental gradient goes in different 
directions depending on genotype (or species). Figure and text 
partly modified from Schlichting & Pigliucci (1998) and DeWitt & 
Scheiner (2004).

New Phytologist (2004) 163: 449–451 www.newphytologist.org © New Phytologist (2004)

 

Box 1. What is phenotypic plasticity?

Phenotypic plasticity is the ability of individual genotypes to express diverse phenotypes, by altering, for example, morphology or
physiology, in response to changes in environmental conditions (Schlichting, 1986; Bradshaw, 1965; Stearns, 1989; Schlichting &
Pigliucci, 1998). The function or relationship that describes the phenotypes produced by a given genotype when exposed to a certain
range of environments is called the reaction norm (Pigliucci, 1996). The reaction norm can be viewed graphically in a phenotype-
environment space (Fig. 1) or as an equation: VP = VG + VE + VGxE + Verr. VP is the total phenotypic variation of a trait, VG is the
genetic variance, VE is the environmental variance, VGxE is the genotype–environmental interaction variance, and Verr is the residual
error variance. The reaction norm is what is actually inherited (i.e. the ability to express different phenotypes). However, it has been
pointed out that plasticity can also be produced by allelic effects that vary across environments (Via, 1993).
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are in fact adaptive in both cases (i.e. can different and even
opposite trait responses increase fitness in different species
under a given set of external stimuli?). Proof of adaptive plas-
ticity also requires analysis of fitness in multiple environments.
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Letters

The Cohesion-Tension 
Theory

In the June 2004 (162: 3) issue of New Phytologist, U.
Zimmermann et al. published a Tansley review that criticizes
the work of many scientists involved in the study of long-
distance water transport in plants (Zimmermann et al.,
2004). Specifically, the review attempts to ‘show that the
arguments of the proponents of the Cohesion Theory
are completely misleading’. We, the undersigned, believe
that this review is misleading in its discussion of the many

recent papers which demonstrate that the fundamentals
of the Cohesion-Tension theory remain valid (Holbrook
et al., 1995; Pockman et al., 1995; Steudle, 1995; Milburn,
1996; Sperry et al., 1996; Tyree, 1997; Melcher et al.,
1998; Comstock, 1999; Stiller & Sperry, 1999; Tyree, 1999;
Wei et al., 1999a; Wei et al., 1999b; Cochard et al., 2000;
Cochard et al., 2001a; Cochard et al., 2001b; Richter,
2001; Steudle, 2001; Cochard, 2002; Tyree & Zimmermann,
2002; Tyree, 2003; Tyree & Cochard, 2003; Tyree et al.,
2003). We wish the readers of New Phytologist to know that
the Cohesion-Tension theory is widely supported as the only
theory consistent with the preponderance of data on water
transport in plants.
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Editorial

Tansley reviews
Authors of Tansley reviews, which are fully peer-reviewed papers,
are asked to consider two major themes in their writing. First,
to deal with major research topics in some depth – to provide a
‘touchstone’ for those intending to enter the field. Second, to
consider the review less as an exercise in literature documentation
and more as a forum for the presentation of ideas. The balance
between these two themes varies widely, depending on the sub-
ject and the individual, but we aim to make the distinction clear.

Where views and opinions are expressed in a Tansley review,
or indeed any New Phytologist paper, these naturally belong
to the authors. This is, we believe, clearly the case in the
writing of the Tansley review by Zimmermann et al. in our
June 2004 (162: 3) issue (Zimmermann et al., 2004).

The Tansley reviews and our forum section encourage
debate in New Phytologist. We therefore welcome discussion,
in this instance concerning the work of Zimmermann et al.
through the comments of Angeles et al. (2004), which com-
plement recent and relevant publications in New Phytologist
by Brodribb & Holbrook (2004) and Sperry (2004).

Ian Woodward
Editor-in-Chief
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Letters

How dangerous is the use of 
fungal biocontrol agents to 
nontarget organisms?

Biological control of plant pathogens is a method based on
the antagonism between microorganisms (Andrews, 1992) –
fungi or bacteria known to be antagonistic to a given plant
pathogen are artificially multiplied and then released into an
agricultural field to control a plant disease. Most biocontrol
agents (BCAs) of plant diseases, similar to most plant patho-
gens they control, are fungi. Their use is considered, in general,
as a safe and environmentally friendly alternative for plant

disease control compared to the application of conventional
pesticides (Whipps & Lumsden, 2001). Recently, Brimner
& Boland (2003) published a review of the nontarget effects
of fungal BCAs of plant pathogens in which they attempt to
demonstrate the way in which many hazards may be associated
with the use of fungi as BCAs of plant diseases. However, as
the examples highlighted here indicate, their case was based
mainly on unsubstantiated statements, which might mislead
and be detrimental to the application of BCAs in the future.

Brimner & Boland (2003) use expressions such as ‘signific-
ant environmental impacts’, ‘significant threat’ and ‘unfore-
seen ecological repercussions’ in order to dramatize suggested
damaging effects of fungal BCAs. However, none of the
data reviewed in the paper support these serious warnings.
Similarly, key statements such as ‘released BCAs have the

© New Phytologist (2004) www.newphytologist.org New Phytologist (2004) 163: 453–455



Letters

New Phytologist (2004) 163: 447–449 www.newphytologist.org © New Phytologist (2004)

Forum454

potential to disrupt entire ecosystems through changes in the
native soil community’ or ‘likely all fungi, including mycor-
rhizal fungi, that have cell walls composed of chitin, would
be at risk for attack from G. virens’ are not supported by
published data. The data cited show only that, in some
cases, some fungi used as BCAs are antagonistic to fungi
other than the target plant pathogens, or have negative effects
on the host plants, but their nontarget activities are not
correlated with any ‘significant environmental impact’.

In the case of Ampelomyces quisqualis, Brimner & Boland
state that ‘… it may be possible for this BCA to attack non-
target fungal species and until its host range is identified, it
is difficult to determine the risk to beneficial fungi and other
soil organisms’. However, A. quisqualis, a highly specialized
intracellular mycoparasite of powdery mildews, is one of the
best known BCAs in terms of its host range (Falk et al.,
1995; Kiss, 1998; Kiss et al., 2004) and, in addition, has
nothing to do with soil organisms because its entire life cycle
takes place on the aerial plant surfaces.

Brimner & Boland also state that ‘cultivated mushrooms
are also at risk’ because it is known that some Trichoderma
strains have been responsible for a disease of the commercially
grown Agaricus while some other Trichoderma strains have
long been used as commercial BCAs. However, the authors
add that the disease-causing Trichoderma strains, recently
described as belonging to a new species, T. aggressivum
(Samuels et al., 2002), have never been used for biocontrol
purposes. Therefore, the warning concerning the attack of
commercially grown mushrooms by BCAs is unsupported.

Another example of an ‘undesired effect’ of a BCA is even
more disturbing. Based on a long-term field experiment
carried out by Gerlach et al. (1999), Brimner & Boland
mention that the application of some Trichoderma strains against
S. sclerotiorum result in the increase of the disease instead of
achieving control. This data was used to demonstrate that
BCAs may contribute to the spread of plant pathogens.
However, the authors do not mention that this data came
from only a single, small-scale experiment; Trichoderma
strains have never been used as BCAs of S. sclerotiorum in an
extensive way in plant protection practice; and Gerlach et al.
(1999) excluded the treatments with Trichoderma from the
5-yr experiment 3 yr after its start because they showed no
promise for practical control.

Some parts of the review raise conceptual problems. For
example, Brimner & Boland write that ‘the most likely non-
target effect of BCAs is a reduction in the diversity and/or
abundance of other fungi in an ecosystem’. However, fungal
BCAs used for plant disease control have usually been
applied in agricultural systems or in forestry, where the pres-
ence of other fungi has always been controlled to some
extent by human activity. These locations should not be
confused with natural ecosystems. Another conceptual problem
is the statement that ‘several species of fungi commonly
found in soils control plant diseases by preying on patho-

genic soil microorganisms, such as nematodes ( Jansson et al.,
2000), pathogenic fungi (Foley & Deacon, 1986; Huang &
Kokko, 1987; Falk et al., 1995, …’ Fungi parasitize, and do
not ‘prey on’, microorganisms; nematodes are not micro-
organisms; and the paper written by Falk et al. (1995) and
cited here deals exclusively with powdery mildews and
A. quisqualis mycoparasites, which are not soil fungi.

Unfortunately, the Brimner & Boland review might be
interpreted by decision makers as evidence of the harm-
ful effects of BCAs and this might easily result in a more
negative attitude towards their use in the plant protection
practice. However, as the examples as selected show, there is
good reason to mistrust the conclusions of the review. The
‘precautionary principle’ might be, at least to some extent,
acceptable when little is known about the nontarget effects
of a novel method. However, it is unreasonable to insist on
ideas that are not backed up by well-founded data. It is well
known that fungi may produce toxic metabolites and may
parasitize each other. However, this is not a reason to stop
using them to produce beer, wine, bread and antibiotics, or
to control plant diseases, whenever a careful scientific invest-
igation has shown that this is a feasible method and has no
major nontarget effects.

Levente Kiss

Plant Protection Institute of the Hungarian Academy
of Sciences,

H-1525 Budapest,
PO Box 102, Hungary

(tel +36 14877566; fax +36 14877555;
email LKISS@NKI.HU)
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Nontarget effects of 
biological control agents

Kiss (2004) raises several concerns over aspects of our review
on the non-target effects of fungi being used as biological control
agents of plant diseases (Brimner & Boland, 2003). We welcome
the opportunity to provide additional comment and clarifica-
tion. In our opinion, the most important point raised by Kiss
is the assertion that the use of biological control agents ‘is
considered, in general, as a safe and environmentally friendly
alternative for plant disease control compared to the appli-
cation of conventional pesticides’ (Kiss, 2004). We agree that
this perception is common, but such assumptions are often
unsubstantiated by scientific evidence. If biological control
products are to live up to this perception, it is important
that we confirm such assumptions scientifically, and do not
avoid the need for toxicology and environmental fate data that
can contribute to the identification of potential environmental
and health risk (Whipps & Lumsden, 2001).

There is increasing published scientific evidence that
microorganisms being used as biological controls can have
significant, measurable effects, both direct and indirect, on
non-target organisms. These effects include displacement of
non-target microorganisms, allergenicity to humans and other
animals, toxigenicity to non-target organisms, and patho-
genicity to non-target organisms (Cook et al., 1996; Brimner
& Boland, 2003; and references therein). There is a growing
awareness for the need to consider these issues when developing
biological control products. The commercial development
of biological controls for plant diseases is a relatively new
field and can arguably be compared with the early stages
of pesticide development when often limited evaluations
of target and non-target effects preceded more widespread
application. It was only through more widespread use that
epidemiological and environmental repercussions of using
such products were identified. Furthermore, there are well
documented examples in other areas of biological control,
such as invasive animal and plant species, where introduced
biological control strategies have become problematic.

Several aspects of our review appear to have contributed
to miscommunication. We used the term ‘environment’ to
include both physical and biological aspects of the environ-
ment, and the term ‘microorganisms’ to include bacteria, fungi,

amoebae, flagellates, nematodes, etc. as is commonly used in the
literature. Our use of the term ‘significant’ was, in most cases,
consistent with a statistical detection between or among
treatments. Similarly, due to the limitations of space, we did
not point out the strengths or weaknesses of individual studies
underlying the points we made, but did provide citations to
the literature for other researchers to consider. Some studies
are obviously more substantial and convincing than others,
and the apparent shortage of articles on non-target assessment
does not dismiss specific experiments if such studies are rep-
resentative of the available information, or test an important
hypothesis. Subsequent studies will support or refute these
often exploratory studies. Unfortunately, much of the available
evidence on non-target effects of biological controls is not
published because of the tendency not to publish the results
of experiments that do not show significant differences between
or among treatments, or because data are often generated
for purposes of commercial registration and are considered
confidential. These considerations may produce a bias in the
literature towards identification of possible risks.

The host range of parasitic fungi can be particularly difficult
to determine and typically relies on compilation of anecdotal
records from the literature, by conducting ecological surveys,
and/or by inoculations of specific combinations of hosts and
parasites. Ampelomyces quisqualis is considered a strict parasite
of powdery mildews based on evidence compiled from the
literature and, within the Erysiphaceae, has a wide host range
(Kiss, 1998). However, specific host–parasite–hyperparasite
interactions have seldom been conducted and, at least to
some degree, are confounded by taxonomic delineations
and a lack of basic ecological data. Inundative biological
controls are often used at high rates of application, and may
be used both within and outside of the indigenous habitats
of the microorganisms being used. Such usage will result in
new interactions of biological control microorganisms
with non-target organisms, although differences in registra-
tion requirements may constrain the use of non-indigenous
microorganisms in some regions (Whipps & Lumsden, 2001).
The study by Kiss (1998) provides an example of how extens-
ive survey data can contribute to our understanding of
the role of mycoparasitism in the natural ecology of fungal
communities in general, and to the known host associations
of this fungus in particular. Taxonomic delineation of fungal
species is another important area of concern in assessing non-
target effects of biological control products, and one that is
of particular concern to regulatory agencies because of the
relationship between the identification of a microorganism and
the scientific literature. For example, until recently, strains
Th4 and Th2 of Trichoderma harzianum were associated with
a green mold disease of Agaricus bisporus, which caused both
real and perceived concern regarding the potential use of
biological control products containing T. harzianum in
surrounding agricultural and horticultural industries. In our
article, we specifically noted that the relationship between
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T. harzianum and A. bisporus was highly specialized and
dependent on the strain of the antagonist. More recently, the
strains of Trichoderma associated with green mold disease were
reclassified as a new species, Trichoderma aggressivum (Samuels
et al., 2002), and this report provides an example of how
taxonomic clarification can contribute to improved risk
assessment, and supports the use of biocontrol strains of
Trichoderma spp. that are non-pathogenic to A. bisporus.

In contrast to the statement by Kiss, there have been
numerous studies on the potential use of Trichoderma spp.
for the management of Sclerotinia spp., and Trichoderma spp.
have a recognized role in the natural ecology of sclerotia of
Sclerotinia spp. (Willetts & Wong, 1980; Adams & Ayers,
1979; Zhou & Boland, 1998). Our review did not focus on
the results of biological control efficacy to target organisms
but did include brief mention of the study by Gerlagh et al.
(1999) because of the unexpected result where applications
of the biocontrol agent resulted in an increased production
of apothecia – an unexpected and possible non-target effect
in itself. In our view, this was not a ‘small-scale experiment’
(Kiss, 2004) as it examined 12 biological control and crop
treatments in a factorial design in 5 × 5 m plots with 10
replications over a five year period. The results made a
substantial contribution to the in situ comparative efficacy of
the biological controls that were compared. The Trichoderma
treatment was dropped from the experiment after three years
due to lack of efficacy although there were relatively few
significant differences among the number of apothecia or
disease in any of the treatments assessed during these years. In
at least two plots, including bean and chicory, that had been
treated with Trichoderma spp., diseased crops developed up
to 2.6 times more apothecia than the untreated control. The
authors advanced no reason for these unexpected results and
additional experimentation would be required to determine
if this was a spurious effect, as suggested by Kiss (2004), or an
initial observation of a more substantial biological pheno-
menon. In our view, it is too early to discriminate between these
possibilities.

Perhaps one of the most challenging aspects of risk assess-
ment for biological control organisms is to discriminate between
significant, measurable effects on other organisms and import-
ant, long-lasting perturbations of other species. This has
become an important discussion in several arenas of risk
assessment and often requires considerable study and dis-
cussion to resolve. Because of the often inadequate amount
of published information on risk assessment of biological
controls for plant diseases to date, we consider it premature
to distinguish effectively between what are significant vs.
important non-target effects, whether this effect be in agri-
cultural, forestry or natural ecosystems. There is increasing
recognition that above-ground–below-ground communities
can be important factors in terrestrial ecosystems, with both
positive and negative feedbacks on species abundance and
diversity (Wardle et al., 2004). In contrast to the view of

Kiss (2004), non-target effects in any of these environments
can potentially be important, and it seems evident that
biological control microorganisms can move from areas of
application to surrounding areas. As pointed out by Whipps
& Lumsden (2001), the key determinants of whether biological
controls are advantageous or not are influenced by scientific
facts or observations, public opinion and perception, and
commercial or financial considerations.

In conclusion, Kiss draws attention to ‘decision makers’ and
the possible repercussions of non-target assessments on pest
control product registration policies. We agree that ‘this is not
a reason to stop using them … whenever a careful scientific
investigation has shown that this is a feasible method and has
no major non-target effects’ (Kiss, 2004). The challenge, of
course, is for those of us involved in biological control research
to provide scientific evidence to support these assumptions.
Indeed, it was through discussions with regulatory agencies
in Canada that one of the authors (GJB) became aware of
many of the issues summarized in our article. The regulatory
approval process for many countries requires substantial
documentation of potential effects to non-target organisms,
and on the environmental fate and persistence of the biological
control microorganism. Such data can be challenging to collect
and there is a need for more discussion on the most appro-
priate protocols for assessing the safety of such products. The
letter by de Jong (1992) summarizes one example of how
quantitative risk assessment in plant pathology and biological
control can contribute to effective risk analysis and policy
development.

We remain optimistic that an increased understanding of
these questions can contribute to the successful understanding
and development of microorganisms as effective and environ-
mentally benign biological controls for plant disease, and we
believe that our review raises important issues that must be
considered when developing or using biological control products.

Greg J. Boland1* and Theresa Brimner2

1Department of Environmental Biology, and
2Department of Botany

University of Guelph, Guelph, Ontario, Canada, N1G 2W1
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